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1 Introduction
Economics has a long tradition in processing data that holds a different view compared with Com-
puter science. Applied Economists dig into data to find the correlation and causality between
different factors, while Computer scientists have developed Machine Learning to predict out-of-
sample data points. In other words, Economists try to interpret data in the past to understand the
causality, while Computer scientists try to make future predictions based on the pattern existing
in the data. This report aims to investigate the effectiveness of the recurrent neural network to
replicate the interpretation power that linear regression can provide, and also the preciseness of
the linear regression in out-of-sample prediction. My result shows that (1) linear interpretation
is good within-sample interpretation but performs devastatingly in out-of-sample prediction, (2)
trained with long enough epochs, the recurrent neural network can reach the interpretation power
of linear regression, but maintaining good enough out-of-sample predictions power requires a high
number of layers, and (3) Both GRU and LSTM performs generally better than SimpleRNN, and
the design of reset gate in GRU can prevent noise from outliers, while the outcome generated by
LSTM exacerbates with outliers.

The dataset I am using is yearly-based time-series data from Lanteri (2018). The dataset is from
Aircraft Values, a UK-based consulting company that specialized in aircraft trading, and contains
transactions of used aircraft between different companies. The sample size of this dataset is 8597,
and contains variables such as:

• the log of the used aircraft price,

• the log of the used aircraft price deflated using Hodrick–Prescott filter,

• year dummy for when the transaction happens,
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• the model type dummy for transacted aircraft, totally 38 types.

• the age of transacted aircraft, and

• interaction term between aircraft age and model for each transaction.

One big drawback about this dataset is the lack of labeling. All the variable labels I’ve written
above are gained from a one-line comment in the replication code for Lanteri (2018), downloaded
from the website of American Economics Review. Therefore, it is pretty hard to interpret the
correlation or causality between variables. For instance, I can only label the model type dummies
as type 1 to 38, rather than counterparts that can be found in the real world. As a result, it is difficult
to do traditional interpretation in Economics and understand the correlation between variables.
Another disadvantage is that the small sample size and limited variables. Based on econometric
theory, the sample size of 8597 is a big enough number for the central limit theorem to hold
and to make an interpretation, but not large enough to make meaningful training for the Machine
learning algorithm. Therefore, combined with two drawbacks, instead of taking this project as the
empirical result for my third-year paper, I’ve downsized the scope of this project to just compare
the interpretation and prediction power of linear regression and recurrent neural network.
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2 Methodology
For linear regression, I am using the linear model module in sklearn package. For the
recurrent neural network, I am using keras API in tensorflow package as the main tool for
implementing the recurrent neural network. To investigate the interpretation power of both linear
regression and recurrent neural networks, I use all of the samples. Since this is a time-series dataset,
randomly splitting the data into the training set and test set would possibly destroy the time series
structure of this data, I’ve separated the first 80% of the sample as the training set and the last 20%
of the sample as testing set after sorting the whole dataset by year. I set the batch/window size to 10.
To systematically test out the effect of epochs, hidden layer number, and model choice, I’ve trained
12 models: 25 and 100 epochs, 1 and 4 hidden layers, and three model choices as SimpleRNN,
LSTM and GRU. Each hidden layer is activated by ReLu, and all models have only 1 dense layer,
activated by linear. For models with only 1 hidden layer, the hidden unit is 32; for models
with 4 hidden layers, the hidden units for each layer are [128, 64, 32, 16]. Since linear model
naturally use mean squared error as loss function, I applied the same loss function when
implementing all three recurrent neural network models. For evaluation metrics, I am using R2 for
in-sample interpretation and mean absolute error for out-of-sample prediction.
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3 Result
Figure 1 shows the distribution of used aircraft transactions in each year. As shown in the figure,

Figure 1: Distribution for deflated log(p) of used aircraft transactions
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Scatter plot: the deflated log(p) from 1967 to 2008
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we have uneven numbers of data between the first 10 years (1967 to 1976) and the last 10 years
(1999 to 2008). This phenomenon is pretty common in time-series data in Economics. Not only
the quality of data collection in the early year is problematic, but the sample size is going to grow
with the expansion of the airline industry. However, I conjecture that such uneven nature might
affect the quality of training if I am only using the first 80% of data points for training. Whether
my models in the recurrent neural network also learns the prosperity of the airline industry requires
further investigation that I cannot finish due to time constraint.

3.1 Result on Interpretation Power
Figure 2, 3, 5 and table 1 summarized the result in the interpretation power. From figure 2 and table
1, higher layer number leads to higher R2 and Adjusted R2. The R2 increased from 0.2751 in 1
layer SimpleRNN to 0.4512 in 4 layer SimpleRNN. The LSTM model in figure 3 combined with
the 4 layer LSTM rows in table 1 shows that the longer the training, better the prediction power.
However, counterintuitive result appears when we compare 4 and 1 layer LSTM row in table 1.
For 1 layer LSTM, the longer the training epochs, the lower its interpretation power, i.e., lower R2

and adjusted R2. From figure 4, it is pretty clear that the combination of long-term and short-term
memory of patterns make more extreme predictions due to some outliers in the true deflated log(p).
I conjecture that the combination of long-term and short-term memory can be easily affected by
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Figure 2: Effect of layers: SimpleRNN as example

(a) 1 layer SimpleRNN (b) 4 layer SimpleRNN

Figure 3: Effect of epochs: 4 layers LSTM as example

(a) epoch 25 (b) epoch 100

the outliers in the data, causing the loss of interpretation power. Such drawbacks do not appear in
GRU, I believe that the addition of reset gate in GRU is effective in preventing overinterpretation of
the data, as shown in figure 5.

3.2 Result on Out-of-sample Prediction Power
Since my metrics is mean absolute error, the lower the better. For the out-of-sample predic-
tion, the first thing I observed from table 2 is how terrible the linear model performs. It misses
the true value by over 1010 times. It also makes plotting the figure for both true value and predicted
value become meaningless, as shown in appendix figure 16. As usual, increases in the number of
layers decrease the mae, and thus raise the preciseness of my prediction. What’s counter-intuitive
is that the increase in the number of epochs from 25 to 100 raise the error in most cases of recur-
rent neural network. One might blindly think that 100 epochs might be the time when the error is
temporarily rising, and falsely guess that this phenomenon will disappear when training with long
enough epochs. However, the combination of small numbers of layers and large epochs is dan-
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Figure 4: Effect of epochs: counterexample with 1 layer LSTM

(a) epoch 25 (b) epoch 100

Figure 5: Model Comparison: LSTM v.s. GRU with epoch 100, layer 1

(a) LSTM
(b) GRU

Table 1: Interpretation Power Comparison

Epoch
25 100

R2 Adjusted R2 R2 Adjusted R2

linear model 0.9632 0.9627 0.9632 0.9627
1 layer SimpleRNN 0.2751 0.2648 0.5068 0.4998
4 layer SimpleRNN 0.4512 0.4434 0.8887 0.8871

1 layer LSTM 0.4586 0.4510 0.3755 0.3667
4 layer LSTM 0.5334 0.5268 0.9338 0.9329

1 layer GRU 0.4357 0.4277 0.6040 0.5983
4 layer GRU 0.6063 0.6007 0.9335 0.9325
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Figure 6: Prediction comparison with low layer number and high training epochs: LSTM

(a) epoch 25, 1 layer (b) epoch 100, 1 layer

gerous. As shown in figure 6, long training epochs in LSTM can generate over −35 of prediction
on log(p) when the lowest true value is only −8, and can generate over −25 of prediction in GRU
(figure 7). Furthermore, in figure 8 and 9 downloaded from tensorboard, the loss function and
the mae metrics of 1 layer GRU fluctuates consistently after epoch 30, and the scale and volatility
are larger than the 4 layers counterpart. Therefore, it is the numbers of layers, or the design of the
neural network itself decides the performance of the model, which cannot be improved by longer
training epochs.

Table 2: Out-of-sample Prediction Power Comparison

Metrics: mae
Epoch

25 100
linear model 12023313799.8250 12023313799.8250

1 layer SimpleRNN 1.4788 1.6571
4 layer SimpleRNN 1.8899 1.5920

1 layer LSTM 1.6038 2.0776
4 layer LSTM 1.4790 1.5889

1 layer GRU 1.5390 2.1386
4 layer GRU 1.5272 1.5931
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Figure 7: Prediction comparison with low layer number and high training epochs: GRU

(a) epoch 25, 1 layer (b) epoch 100, 1 layer

Figure 8: Loss function per epoch: GRU
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Figure 9: mae metrics per epoch: GRU
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4 Conclusion
In this report, I’ve compared the linear regression and three recurrent neural network models and
see their performance on in-sample interpretation power and out-of-sample prediction power. I’ve
found that the power of the recurrent neural network can replicate the interpretation power that the
linear regression has, and also maintain relatively well in the out-of-sample prediction. However,
all details in training a neural network are critical. The combination of lower layers of network
and high training epochs can generate a large deviation from the true value since the model has
learned the pattern of outliers. The architecture and design of the network directly determines the
performance, regardless of the training epochs. GRU performs generally better than LSTM, and I
conjecture that the design of reset gate decreases the effect of long-term memory that LSTM tries
to capture but unfortunately amplified.

The limitation of this report mainly lies in the limitation on this dataset. The relatively small sample
size makes training and testing faster, but also left the question that whether the above observations
hold in big data. Also, the number of data points available in the beginning period is very different
compared with the end period, creating difficulties for the recurrent neural network to learn based
on the pattern in the beginning period. In the future, I hope I can use big and balanced data to
check whether the above observations hold.
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A Additional figures for different models

Figure 10: GRU Prediction Total layer1 epoch25 window10 loss mse
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Figure 11: GRU Prediction Total layer4 epoch100 window10 loss mse

Figure 12: GRU Prediction Total layer4 epoch25 window10 loss mse
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Figure 13: GRU Prediction Train Test layer4 epoch100 window10 loss mse

Figure 14: GRU Prediction Train Test layer4 epoch25 window10 loss mse
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Figure 15: LinearRegression Prediction Total

Figure 16: LinearRegression Prediction Train Test
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Figure 17: LSTM Prediction Train Test layer4 epoch100 window10 loss mse

Figure 18: LSTM Prediction Train Test layer4 epoch25 window10 loss mse
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Figure 19: SimpleRNN Prediction Total layer1 epoch25 window10 loss mse

Figure 20: SimpleRNN Prediction Total layer4 epoch25 window10 loss mse

15



Figure 21: SimpleRNN Prediction Train Test layer1 epoch100 window10 loss mse

Figure 22: SimpleRNN Prediction Train Test layer1 epoch25 window10 loss mse
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Figure 23: SimpleRNN Prediction Train Test layer4 epoch100 window10 loss mse

Figure 24: SimpleRNN Prediction Train Test layer4 epoch25 window10 loss mse

17



References
Hodrick, Robert J. and Edward C. Prescott (Feb. 1997). “Postwar U.S. Business Cycles: An Em-

pirical Investigation”. In: Journal of Money, Credit and Banking 29.1, p. 1. ISSN: 0022-2879.
Lanteri, Andrea (Sept. 2018). “The Market for Used Capital: Endogenous Irreversibility and Re-

allocation over the Business Cycle”. In: American Economic Review 108.9, pp. 2383–2419.
ISSN: 0002-8282.

18


	Introduction
	Methodology
	Result
	Result on Interpretation Power
	Result on Out-of-sample Prediction Power

	Conclusion
	Additional figures for different models

