Asset Pricing in Endowment Economy

Hui-Jun Chen
The Ohio State University

November 20, 2022

Overview

How to value an asset?

- Lucas (1978) answer this question by the "fruit tree" story:
- each representative household initially owns one fruit tree,
- the fruits (dividend) from tree is uncertain each period, and
- household cannot store the fruits.
- To achieve intertemporal substitution, HH can exchange the property right of the tree \Rightarrow share of the tree.
- Each tree is identical \Rightarrow the randomness of fruit is identical.
- If fruits (dividend) vary over time, how do share price varies?
- What is the fundenmental value of an asset?
- How to compare fundenmental value between different assets?

Model Setting

Let

- z be the fruit/dividend per tree
- s be the share of a tree,

Household's problem:

$$
\begin{equation*}
V(s, z)=\max _{s^{\prime}, c} u(c)+\beta \mathbb{E}_{z^{\prime} \mid z}\left[V\left(s^{\prime}, z^{\prime}\right)\right] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { subject to } \quad c+p s^{\prime} \leq(z+p) s \tag{2}
\end{equation*}
$$

Equilibrium outcome is trivial: since the only resource is z, so goods market clearing condition is $c=z$, which leads to $s=1$ in equilibrium.
() The End ()...?

What is share prices?

- Fundamental value of an asset is the expected discounted NPV of all its future payoff.
- In the case of firm share the payoff is the dividend.
- and we are going to derive the share price by solving the optimal choice of share.

Recall HH's problem at time t can be written as

$$
\begin{equation*}
V(s, z)=\max _{s^{\prime}, c} u(c)+\beta \mathbb{E}_{z^{\prime} \mid z}\left[u\left(c^{\prime}\right)\right]+\beta^{2} \mathbb{E}_{z^{\prime} \mid z}\left[V\left(s^{\prime \prime}, z^{\prime \prime}\right)\right] \tag{3}
\end{equation*}
$$

subject to $c+p s^{\prime} \leq(z+p) s$

$$
\begin{equation*}
c^{\prime}+p^{\prime} s^{\prime \prime} \leq\left(z^{\prime}+p^{\prime}\right) s^{\prime} \tag{4}
\end{equation*}
$$

Optimal Choice of Share

Substitute,

$$
\begin{aligned}
V(s, z)= & \max _{s^{\prime}} u\left((z+p) s-p s^{\prime}\right) \\
& +\beta \mathbb{E}_{z^{\prime} \mid z}\left[u\left(\left(z^{\prime}+p^{\prime}\right) s^{\prime}-p^{\prime} s^{\prime \prime}\right)\right] \\
& +\beta^{2} \mathbb{E}\left[V\left(s^{\prime \prime}, z^{\prime \prime}\right)\right]
\end{aligned}
$$

FOC,

$$
\begin{equation*}
\left.\left[s^{\prime}\right]: \quad u^{\prime}(c) p=\beta \mathbb{E}_{z^{\prime} \mid z}\left[u^{\prime}\left(c^{\prime}\right)\left(z^{\prime}+p^{\prime}\right)\right]=\beta \mathbb{E}_{z^{\prime} \mid z}\left[u^{\prime}\left(c^{\prime}\right) z^{\prime}+u^{\prime}\left(c^{\prime}\right) p^{\prime}\right)\right] \tag{6}
\end{equation*}
$$

Notice that the current price p depends on future price p^{\prime} !

Fundamental Value of Share: Euler Equation Update

Nothing stops us to figure out what p^{\prime} would looks like, and it should be update (6) one period forward:

$$
u^{\prime}\left(c^{\prime}\right) p^{\prime}=\beta \mathbb{E}_{z^{\prime \prime} \mid z^{\prime}}\left[u^{\prime}\left(c^{\prime \prime}\right)\left(z^{\prime \prime}+p^{\prime \prime}\right)\right]
$$

So (6) will be

$$
\begin{align*}
u^{\prime}(c) p & =\mathbb{E}_{z^{\prime} \mid z}\left[\beta u^{\prime}\left(c^{\prime}\right) z^{\prime}+\beta^{2} \mathbb{E}_{z^{\prime \prime} \mid z^{\prime}}\left[u^{\prime}\left(c^{\prime \prime}\right)\left(z^{\prime \prime}+p^{\prime \prime}\right)\right]\right] \tag{7}\\
& =\mathbb{E}_{z^{\prime \prime}, z^{\prime} \mid z}\left[\beta u^{\prime}\left(c^{\prime}\right) z^{\prime}+\beta^{2} u^{\prime}\left(c^{\prime \prime}\right) z^{\prime \prime}+\beta^{2} u^{\prime}\left(c^{\prime \prime}\right) p^{\prime \prime}\right] \tag{8}
\end{align*}
$$

Repeat substitution and get

$$
\begin{equation*}
u^{\prime}(c) p_{t}=\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \beta^{j} u^{\prime}\left(c_{t+j}\right) z_{t+j}\right]+\lim _{j \rightarrow \infty} \beta^{j} u^{\prime}\left(c_{t+j}\right) p_{t+j} \tag{9}
\end{equation*}
$$

Fundamental Value of Share

By transversality condition,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \beta^{j} u^{\prime}\left(c_{t+j}\right) p_{t+j}=0 \tag{10}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
u^{\prime}(c) p_{t}=\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \beta^{j} u^{\prime}\left(c_{t+j}\right) z_{t+j}\right] \tag{11}
\end{equation*}
$$

with goods market clearing condition $c_{t}=z_{t}$,

$$
\begin{equation*}
p_{t}=\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \beta^{j} \frac{u^{\prime}\left(z_{t+j}\right)}{u^{\prime}\left(z_{t}\right)} z_{t+j}\right] \tag{12}
\end{equation*}
$$

Fundamental Value of Share: Analysis

$$
\begin{equation*}
p_{t}=\mathbb{E}_{t}\left[\sum_{j=1}^{\infty} \beta^{j} \frac{u^{\prime}\left(z_{t+j}\right)}{u^{\prime}\left(z_{t}\right)} z_{t+j}\right] \tag{13}
\end{equation*}
$$

Take one of the period, say $j=3$, the evaluation of dividend z_{t+3} is

$$
\underbrace{\beta^{3} \frac{u^{\prime}\left(z_{t+3}\right)}{u^{\prime}\left(z_{t}\right)}}_{\text {subjective discounted evaluation of dividend }} \underbrace{z_{t+3}}_{\text {objective flow dividend }}
$$

Thus, we show that the share price p represents the expectation of subjective discounted evaluation of all future dividends.

Comparison between Evaluations

How to compare the value of different assets?
■ Risk premium: measure of excess return that is required by an individual to compensate being subjected to an increased level of risk.

- i.e., the percentage compensation required for household to take risk.
- math: $\frac{\text { return on share }- \text { return on risk-free }}{\text { return on risk-free }}$
- Share is one kind of risky asset: the fruits from the tree is random.
- If household is able to access to risk-free asset, in equilibrium household should be indifferent between buying risk-free asset or risky share.

Access to Treasury Bill

Extension: HH can access both treasury bill and risky share.

- Buy share s at price p, get return $\left(z^{\prime}+p^{\prime}\right)$ next period
- Buy treasury bill a at price q, get return 1 next period

Budget constraint:

$$
\begin{equation*}
c+p s^{\prime}+q a^{\prime} \leq[z+p] s+a \tag{15}
\end{equation*}
$$

Following the same approach before (blackboard!), we know the FOCs are

$$
\begin{array}{ll}
{\left[a^{\prime}\right]:} & u^{\prime}(c) q=\beta \mathbb{E}_{z^{\prime} \mid z}\left[u^{\prime}\left(c^{\prime}\right)\right] \Rightarrow q=\mathbb{E}_{z^{\prime} \mid z}\left[\beta \frac{u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)}\right] \\
{\left[s^{\prime}\right]:} & u^{\prime}(c) p=\beta \mathbb{E}_{z^{\prime} \mid z}\left[u^{\prime}\left(c^{\prime}\right) z^{\prime}+u^{\prime}\left(c^{\prime}\right) p^{\prime}\right] \tag{17}
\end{array}
$$

No-arbitrage Condition

Household are indifferent to treasury bill or risky share in equilibrium. Math representation can be observed by rearranging two FOCs:

$$
\begin{array}{ll}
{\left[a^{\prime}\right]:} & 1=\mathbb{E}_{z^{\prime} \mid z}\left[\beta \frac{u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)} \times \frac{1}{q}\right] \\
{\left[s^{\prime}\right]:} & 1=\mathbb{E}_{z^{\prime} \mid z}\left[\beta \frac{u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)} \times \frac{z^{\prime}+p^{\prime}}{p}\right] \tag{19}
\end{array}
$$

Here, we derived expressions for the rate of return:
■ Gross return on share: $e\left(z, z^{\prime}\right) \equiv \frac{z^{\prime}+p^{\prime}}{p}$
■ Gross return on risk-free bond: $R(z) \equiv \frac{1}{q}$

Risk Premium: Derivation

From conditional covariance relation:

$$
\begin{align*}
\operatorname{cov}_{z}(A, B) & =\mathbb{E}_{z^{\prime} \mid z}\left[\left(A-\mathbb{E}_{z^{\prime} \mid z}[A]\right)\left(B-\mathbb{E}_{z^{\prime} \mid z}[B]\right)\right] \tag{20}\\
& =\mathbb{E}_{z^{\prime} \mid z}[A B]-\mathbb{E}_{z^{\prime} \mid z}[A] \mathbb{E}_{z^{\prime} \mid z}[B] \tag{21}
\end{align*}
$$

Equation (19) is $\mathbb{E}_{z^{\prime} \mid z}[A B]$, where $A=\frac{\beta u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)}$ and $B=e\left(z, z^{\prime}\right)$, and thus

$$
\begin{align*}
1 & =\mathbb{E}_{z^{\prime} \mid z}\left[\beta \frac{u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)} \times e\left(z, z^{\prime}\right)\right] \tag{22}\\
& =\operatorname{cov}_{z}\left[\beta \frac{u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)}, e\left(z, z^{\prime}\right)\right] \tag{23}\\
& +\underbrace{\mathbb{E}_{z^{\prime} \mid z}\left[\beta \frac{u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)}\right]}_{z^{\prime} \mid z} \mathbb{E}_{z^{\prime} \mid z}\left[e\left(z, z^{\prime}\right)\right] \tag{24}\\
& \equiv \text { return on bond }
\end{align*}
$$

Risk Premium: Derivation (Cont.)

Therefore

$$
\begin{align*}
1= & \operatorname{cov}_{z}\left[\frac{\beta u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)}, e\left(z, z^{\prime}\right)\right] \tag{25}\\
& +\mathbb{E}_{z^{\prime} \mid z}\left[e\left(z, z^{\prime}\right)\right] \times \frac{1}{R(z)} \tag{26}
\end{align*}
$$

Stochastic discounting factor (SDF) / pricing kernel: HH's discounted percentage change in marginal utility.

Risk Premium: Discussion

$$
\underbrace{\frac{\mathbb{E}_{z^{\prime} \mid z}\left[e\left(z, z^{\prime}\right)\right]-R(z)}{R(z)}}_{\text {risk premium }}=-\operatorname{cov}_{z}[\underbrace{\frac{\beta u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)}}_{\text {SDF }}, e\left(z, z^{\prime}\right)]
$$

(1) If return on share, $e\left(z, z^{\prime}\right)$, is uncorrelated with consumption change $c \rightarrow c^{\prime}$, then risk premium is 0

- HH not bearing risk \Rightarrow no need to compensate HH
(2) If return on share, $e\left(z, z^{\prime}\right)$, is high when c^{\prime} is low, i.e., $e\left(z, z^{\prime}\right)$ and SDF are positively correlated, then risk premium is negative
- HH is benefiting from buying this asset \Rightarrow need to charge HH !
(3) If return on share, $e\left(z, z^{\prime}\right)$, is low when c^{\prime} is low, i.e., $e\left(z, z^{\prime}\right)$ and SDF are negatively correlated, then risk premium is positive
- HH is bearing risk \Rightarrow need to compensate HH

Appendix

References I

Lucas, Robert E. (1978) "Asset Prices in an Exchange Economy," Econometrica, 46 (6), 1429, 10.2307/1913837.

