Lecture 10
 Examples on Competitive Equilibrium and Social Planner's Problem

Hui-Jun Chen
The Ohio State University

$$
\text { June 9, } 2022
$$

Overview

After constructing both consumers' and firms' problem, we start to bring them together in one-period model:

- Lecture 8: competitive equilibrium (CE)
- each agent solve their problems individually
- aggregate decision determines "prices" (wage, rent, etc.)
- Lecture 9: social planer's problem (SPP)
- imaginary and benevolent social planner determines the allocation
- should be the most efficient outcome
- Lecture 10: CE and SPP examples

Two Dimensional Chain Rule

Suppose we have a utility function $U(C, l)$, where C is the consumption, and l is the leisure, and both $C=C(w)$ and $l=l(w)$ are the function of equilibrium wage w, then

$$
\begin{align*}
\frac{d}{d w}[U(C(w), l(w))]= & D_{C} U(C(w), l(w)) \times \frac{d C(w)}{d w} \tag{1}\\
& +D_{l} U(C(w), l(w)) \times \frac{d l(w)}{d w}
\end{align*}
$$

Here is a good rule of thumb:
When you solve the problem of an agent who chooses y taking x as given, the answer should take the form of $y(x)$.

Example: the consumer maximizes utility by choosing consumption, leisure, and labor supply, taking the wage and profits as given. $(G=0)$

$$
\begin{equation*}
\max _{C, l, N^{s}} U(C, l) \quad \text { subject to } \quad C=w N^{s}+\pi \quad \text { and } \quad l+N^{s}=h \tag{2}
\end{equation*}
$$

■ solution takes the form: $C(w, \pi), l(w, \pi), N^{s}(w, \pi)$

- why not h, or utility parameters? Not endogenous to the model!
- can repeat this idea for the firm to get $N^{d}(w), Y(w), \pi(w)$

What does equilibrium do? Figures out what level of "taken as given" but endogenous variables has to occur:

- consumer: $\pi=\pi(w)$ from firm's problem

■ labor supply can be rewrite as: $N^{s}(w, \pi)=N^{s}(w, \pi(w))=N^{s}(w)$

- labor market clearing: $N^{d}\left(w^{*}\right)=N^{s}\left(w^{*}\right)$, where w^{*} is eqm wage

Question: any of the "taken as given variables" show up in the SPP?
■ Ans: NO! Social planner is benevolent dictator!

Model Environment

- Consumer: $U(C, l)=\frac{C^{1-b}}{1-b}+\frac{l^{1-d}}{1-d}$, where $b=2$ and $d=\frac{3}{2}$.
- b, d are parameters
- $h=1$ is time endowment to allocate between leisure and labor supply
- owns the firm, subject to lump-sum $\operatorname{tax} T \geq 0$
- Firm: $z F(K, N)=z K^{\alpha} N^{1-\alpha}$, where $K=1$ and $\alpha=\frac{1}{2}$ (param)
- Government: $T=G$
- Labor market: both consumer and firm take wage rate w as given

Experiments

(1) Benchmark: $z=1$ and $G=0$
(2) Experiment 1: $z=1.2$ and $G=0$
(3) Experiment 2: $z=1$ and $G=0.5$

Solve Benchmark in Social Planner's Problem

- PPF: $C+G=z N^{1-\alpha}$, where $\alpha=\frac{1}{2}$
- Time: $N=h-l$, where $h=1$
- Social Planner's Problem:

$$
\begin{array}{rl}
\max _{l} & U(C(l), l)=\frac{C(l)^{1-b}}{1-b}+\frac{l^{1-d}}{1-d} \\
\text { s.t. } & C=Y-G \\
& Y=z N^{1-\alpha} \tag{3}\\
& N=1-l \\
\Rightarrow \quad \max _{l} & \frac{\left(z(1-l)^{1-\alpha}-G\right)^{1-b}}{1-b}+\frac{l^{1-d}}{1-d}
\end{array}
$$

Solve Benchmark in Social Planner's Problem (Cont.)

$$
\begin{align*}
& \max _{l} \frac{\left(z(1-l)^{1-\alpha}-G\right)^{1-b}}{1-b}+\frac{l^{1-d}}{1-d} \tag{4}\\
\text { FOC: } \quad & \underbrace{\left(z(1-l)^{1-\alpha}-G\right)^{-b}}_{\frac{(\cdot)^{1-b}}{1-b}} \times \underbrace{(1-\alpha) z(1-l)^{-\alpha}}_{z(1-l)^{1-\alpha}} \times \underbrace{(-1)}_{-l}+l^{-d}=0 \tag{5}\\
G=0: \quad & z^{-b}(1-l)^{-b(1-\alpha)} \times(1-\alpha) z(1-l)^{-\alpha}=l^{-d} \tag{6}\\
& (1-\alpha) z^{1-b}(1-l)^{-\alpha-b+\alpha b}=l^{-d} \tag{7}\\
& \alpha=1 / 2 ; \quad b=2 ; \quad d=3 / 2 \tag{8}\\
\text { Apply: } \quad & \frac{1}{2} z^{-1}(1-l)^{-\frac{3}{2}}=l^{-\frac{3}{2}} \Rightarrow \frac{1}{2 z}=\left(\frac{1-l}{l}\right)^{\frac{3}{2}} \tag{9}\\
& \Rightarrow \frac{1-l}{l}=\left(\frac{1}{2 z}\right)^{\frac{2}{3}} \Rightarrow l(z, 0)=\frac{1}{1+(2 z)^{-\frac{2}{3}}} \tag{10}\\
& \Rightarrow l \approx 0.61, N \approx 0.39, Y=C \approx 0.62, w=\frac{z}{2} N^{-\frac{1}{2}} \approx 0.8 \tag{11}
\end{align*}
$$

Visualization: Benchmark in SPP

Indifference curve and PPF are tangent at optimal bundle

$$
\begin{aligned}
& \text { slope at tangency }\left(C_{0}, l_{0}\right) \\
= & \text { slope of } \operatorname{IC}\left(-M R S_{l, C}\right) \\
= & \text { slope of budget line }(-w) \\
= & \text { slope of } \operatorname{PPF}\left(-M R T_{l, C}\right) \\
= & \text { slope of production fcn }(-M P N)
\end{aligned}
$$

Solving with New TFP

Recall that we solved for the equilibrium quantity of leisure as a function of TFP:

$$
\begin{equation*}
l(z)=\frac{1}{1+(2 z)^{-\frac{2}{3}}} \tag{12}
\end{equation*}
$$

So now we've solved for all possible "experiment 1's"! Just plug in $z=1.2$ to get $l \approx 0.642$, and plug in to get all the rest as well.

Visualization: Experiment 1

Tangency preserved, just shifted

$$
\begin{aligned}
& \text { slope at tangency }\left(C_{1}, l_{1}\right) \\
= & \text { slope of } \mathrm{IC}\left(-M R S_{l, C}\right) \\
= & \text { slope of budget line }(-w) \\
= & \text { slope of } \operatorname{PPF}\left(-M R T_{l, C}\right) \\
= & \text { slope of production fcn }(-M P N)
\end{aligned}
$$

Comparison: Experiment 1 and Benchmark

What's different?

- higher productivity means PPF shifts outward
- outward shift of PPF makes higher utility level (IC) attainable
- tangency is steeper: wage increases
- both consumption and leisure increase!

Experiment 1: Income and Substitution Effect

Recall wage increase case from the consumer problem:

- substitution effect: move along IC but reflect new wage (i,e, new budget or new PPF)
- C increases, l decreases

■ income effect: move up to new budget line / PPF

- C and l both increase
- here, income effect wins and leisure increases

Comparison: Experiment 2 and Benchmark

Note: SPP harder to solve by hand
with $G \neq 0$ details. But, can still analyze with graphs!

- higher government spending shifts PPF inward
- inward shift of PPF lowers utility level (IC) attainable

■ budget shallower: wage falls

- consumption, leisure fall (recall normal goods assumption)
- can show output increases

Response to Data

Effect of \uparrow in	TFP	G
Output	Increase	Increase
Consumption	Increase	Decrease
Employment	Ambiguous	Increase
Wage	Increase	Decrease

> TFP is a overall better match! Real Business Cycle theory

■ recall key business cycle facts: employment, consumption, real wage are all procyclical

■ recall key trend: output has grown steadily for last century

- question: which model is more consistent with these facts?

Data: Government Spending from WWII

Figure 5.7 GDP, Consumption, and Government Expenditures

- large increase in G to finance war effort
- modest increase in Y
- slight decline in C
- consistent with our model!

Data: Solow Residual, $z=\frac{Y}{K^{\alpha} N^{1-\alpha}}$

Figure 4.18 The Solow Residual for the United States

Figure 5.11 Deviations from Trend in GDP and the Solow Residual

Appendix

How to solve $G \neq 0$

$$
\begin{equation*}
\max _{l} \frac{\left(z(1-l)^{1-\alpha}-G\right)^{1-b}}{1-b}+\frac{l^{1-d}}{1-d} \tag{13}
\end{equation*}
$$

FOC: $\left.\quad z(1-l)^{1-\alpha}-G\right)^{-b} \times(1-\alpha) z(1-l)^{-\alpha}=l^{-d}$
Divide : $\quad\left(z(1-l)^{1-\alpha}-G\right)^{-b}=\frac{l^{-d}}{(1-\alpha) z(1-l)^{-\alpha}}$
power of $-\frac{1}{b}: \quad z(1-l)^{1-\alpha}-G=\left[\frac{l^{-d}}{(1-\alpha) z(1-l)^{-\alpha}}\right]^{-\frac{1}{b}}$

$$
\begin{equation*}
\Longleftrightarrow l=F^{-1}(G) \tag{17}
\end{equation*}
$$

