Lecture 2 Measurement I Economic Aggregates

Hui-Jun Chen

The Ohio State University

May 9, 2022

$3\ {\rm Approach}$ to Measure GDP

Source: National Income and Product Accounts (NIPA)

- Product (value-added) approach: sum of value added to all goods and services across all productive units in the economy
- Expenditure approach: sum of spending on all final goods and services produced in the economy
- Income approach: sum of all income received by economic agents contributing to production

If no measurement error, all should give the same answer!

3 Approach to Measure GDP: Example

Variable	Quantity (\$M)							
	Coconut Producer	Restaurant	Government					
Revenue*	20	30	5.5					
sales for consumption	8	30	-					
sales as intermediate	12	0	-					
Costs	7	19	5.5					
wages	5	4	5.5					
interest on loan	0.5	-	-					
cost of intermediates	-	12	-					
taxes*	1.5	3	-					
After-Tax Profits**	13	11	-					
* government gets revenue from taxes on producers and consumers, spends wages to provide defense services ** profits are revenues minus costs								

Question: how to calculate GDP?

Inflation

Three Approach

The Product Approach

Question: What is the value added by each agent?

- **Coconut Producer**: Final good \$20M, no intermediate input
- **Restaurant**: Final goods \$30*M*, with intermediate input \$12*M* from Coconut Producer
 - value added: 30 12 = 18M
- **Government**: Defence services, valued at cost \$5.5M

The Expenditure Approach

Question: What is the total spending?

- **Formula**: Y = C + I + G + NX
- **Consumption** (*C*): "sale for consumption" row
 - To Coconut Producer: 8M
 - To Restaurant: 30M
- No investment (I) and net export (NX).
- **Government** (G): defense service 5.5M
- **GDP** (Y): 38 + 5.5 = 43.5M

5/11

Income Approach

Question: how much does agent earn?

- Workers: wages 5*M* from Coconut Producer, 4*M* from Restaurant and 5.5*M* from Government
- Firms:
 - After-tax Profits: 13M to Coconut Producer and 11M to Restaurant
 - Interest on Ioan: 0.5M for Coconut Producer
- **Government**: Taxes 1.5M from Coconut Producer and 3M from Restaurant
 - Expenditure is $5.5M \Rightarrow \text{budget deficit}$
- **GDP**: 5 + 4 + 5.5 + 13 + 11 + 0.5 + 1.5 + 3 = 43.5M

Income-Expenditure Identity: Income earned goes to expenditure

Prices in GDP measurement

The revenue row is calculated by 10M coconuts $\times\ \$2$ each

■ What if coconut price increases to \$3 next year?

Solution: common price index across different time Two ways to build common price index:

- GDP deflator: common GDP standard
- **2** Consumer Price Index (CPI): common consumption basket (Q)

Three Approach

Prices in GDP measurement (Cont.)

- GDP deflator: ratio between nominal and real GDP
 - ① Calculate real GDP relative to base year by base year price level
 - E.g. $RealGDP_{2020}={\rm Cost}$ of Q_{2020} at $P_{2000},$ use 2000 as base year
 - While $NominalGDP_{2020} = Cost of Q_{2020}$ at P_{2020}
 - Problem: choose which year? \Rightarrow "chain-weighting" (rolling base)

2 Calculate ratio:
$$\frac{NominalGDP_{2020}}{RealGDP_{2020}} \times 100$$

- CPI: normalize consumption basket of base year as 100, relative to other year
 - E.g. $CPI_{2020} = \frac{\text{Cost of } Q_{2000} \text{ at } P_{2020}}{\text{Cost of } Q_{2000} \text{ at } P_{2000}} \times 100$, use 2000 as base year
 - Problem:

2 new goods & services introduced, old goods & services obsolete

Example: Nominal v.s. Real GDP

- Nominal GDP: value of goods & services at current price
- **Real GDP**: value of goods & services at base year price

	Apples		Oranges		GDP Measure		
Year	Quantity	Price	Quantity	Price	Nominal	Real (base year =1)	Real (base year = 2)
1	50	\$1.00	100	\$0.80	\$130	\$130	\$222.5
2	80	\$1.25	120	\$1.60	\$292	\$176	\$292

Choice of base year affects the GDP measure!

alternative: chain-weighting

Three Approach

Inflation

Employment

Data: Nominal v.s. Real GDP

inflation growth

 economics
 growth =
 nominal grows
 faster than real

Question: What year is the base year on this graph?

Ans: 2009, whenNominal = Real

10/11

Population Composition

Three Approach

• participation rate =
$$\frac{LF}{N}$$

• unemployment rate =
$$\frac{U}{LF}$$

• employment rate =
$$\frac{E}{N}$$