Lecture 4
 Representative Consumer
 Preference and Constraints

Hui-Jun Chen
The Ohio State University

April 27, 2022

Overview: Lecture 4-7

Provide micro-foundation for the macro implication (Lucas critique)

- Representative Consumer:
- Lecture 4: preference, constraints
- Lecture 5: optimization, application
- Lecture 6: Numerical Examples

■ Representative Firm:

- Lecture 7: production, optimization, application

Utility Function

We use utility function $U(C, l)$ to represent the preference/happiness

- C : consumption (assume single/composite goods)
- l: leisure (time spent not working)

Utility function defines the ranking of (C, l) bundles
■ If $U\left(C_{1}, l_{1}\right)>U\left(C_{2}, l_{2}\right)$, then $\left(C_{1}, l_{1}\right)$ is strictly preferred to $\left(C_{2}, l_{2}\right)$

- $\because\left(C_{1}, l_{1}\right)$ bundle generate more happiness than $\left(C_{2}, l_{2}\right)$ bundle
- If $U\left(C_{1}, l_{1}\right)=U\left(C_{2}, l_{2}\right)$, then indifferent between $\left(C_{1}, l_{1}\right)$ and $\left(C_{2}, l_{2}\right)$
- $\because\left(C_{1}, l_{1}\right)$ bundle generate same happiness as $\left(C_{2}, l_{2}\right)$ bundle

■ Note: level of utility is meaningless, only order matters!

Properties of Utility Function

(1) Monotonicity: more is always better!

- If $C_{1}>C_{2}$ and $l_{1}>l_{2}$, then $U\left(C_{1}, l_{1}\right)>U\left(C_{2}, l_{2}\right)$
(2) Convexity: prefer diversified consumption bundles
- e.g. prefer food + leisure rather than overeating / oversleeping
(3) Normality: consumption and leisure are normal goods
- income $\uparrow \Rightarrow$ consumption \uparrow
- leisure is complicated: relates to income
- the poor: less leisure means more labor income
- the rich: more income means more leisure

Rep. of Utility Function: Indifference Curve

Figure 4.1 Indifference Curves

- Def: (C, l) bundles that yield the same utility level
- Monotonicity \Rightarrow downward sloping
- Convexity \Rightarrow diversity shown in comparison between point B and D

Rep. of Utility Function: Indifference Curve (Cont.)

- Normality: $\mathrm{Marginal} \mathrm{Rate}_{\text {af }} \mathrm{S}_{\text {ubstitution }}$
- Marginal: for arbitrary small change in x-axis (leisure in this case)
- rate of substitution: the amount on y-axis has to be sacrificed (consumption in this case)

$$
\begin{equation*}
M R S_{l, C}=\frac{D_{l} U(C, l)}{D_{C} U(C, l)}, \tag{1}
\end{equation*}
$$

where $D_{x} U(\cdot)$ is derivative of U w.r.t. x

Figure 4.2 MRS

Computing MRS

■ little change in leisure $d l>0 \Rightarrow$ change in utility $D_{l} U(C, l) d l$

- with the cost of income loss \Rightarrow consumption has to drop by $d C<0$ amount \Rightarrow change in utility $D_{C} U(C, l) d C$
- Stay on the IC \Rightarrow utility remain the same:

$$
\begin{aligned}
& D_{C} U(C, l) d C+D_{l} U(C, l) d l=0 \\
& \frac{d C}{d l}=-\frac{D_{l} U(C, l)}{D_{C} U(C, l)}=-M R S_{l, C}
\end{aligned}
$$

Algebraic Example

Suppose $U(C, l)=\frac{C^{1-\sigma}}{1-\sigma}+\psi \ln l$, where σ and ψ are parameters. Then,

- $D_{C} U(C, l)=(1-\sigma) \frac{C^{1-\sigma-1}}{1-\sigma}=C^{-\sigma}$
- Remember $\frac{d \ln l}{d l}=\frac{1}{l}, D_{l} U(C, l)=\frac{\psi}{l}$
- $M R S_{l, C}=\frac{D_{l} U(C, l)}{D_{C} U(C, l)}=\frac{\psi}{l C^{-\sigma}}$

Budget Constraints

- Time: consumer has h hours per day, and allocate between leisure l and labor supply N^{s}

$$
\begin{equation*}
l+N^{s}=h \tag{2}
\end{equation*}
$$

- Budget: consumer cannot spend more than the income he/she has
- labor income: wage rate w times labor supply $N^{s}, w N^{s}$
- dividends income: consumer buys share of the firm, gain dividend π
- tax: consumer is subject to lump-sum taxes T

$$
\begin{equation*}
C \leq w N^{s}+\pi-T \tag{3}
\end{equation*}
$$

■ Consumption is numeraire: price normalized to 1 .

- Imagine consumption goods as unit of account, ppl directly trade with consumption goods

Visualization of Budget Set

Figure 4.3 Representative Consumer's Budget Constraint when $T>\pi$ ("poor")

Figure 4.4 Representative Consumer's Budget Constraint when $T<\pi$ ("rich")

Appendix

Note on Calculus

- Function: $y=f(x)$, how y is determined by x
- E.g., $y=3 x+2$: if $x=3$, then 3 times 3 and plus 2 will get $y=11$
- Differentiation: how changes in x results in change in y
- E.g., $y=3 x+2$,

Table: Table for how the value of x affects the value of y

x	1	2	3	4	5
y	5	8	11	14	17

Notice $\Delta x=1 \Longrightarrow \Delta y=3 \Longrightarrow \frac{\Delta y}{\Delta x}=3$, change to differentiation notation, $\frac{d y}{d x}=3$

- Tips: $y=3 x^{2}+9 x+2$, look at terms with x, $d y=3 \times 2 x(d x)+9(d x) \Longrightarrow \frac{d y}{d x}=6 x+9$

