Lecture 4 Representative Consumer Preference and Constraints

Hui-Jun Chen

The Ohio State University

April 27, 2022

Overview: Lecture 4 - 7

Provide micro-foundation for the macro implication (Lucas critique)

- Representative Consumer:
 - Lecture 4: preference, constraints
 - Lecture 5: optimization, application
 - Lecture 6: Numerical Examples
- Representative Firm:
 - Lecture 7: production, optimization, application

Utility Function

We use utility function U(C, l) to represent the preference/happiness

- *C*: consumption (assume single/composite goods)
- *l*: leisure (time spent not working)

Utility function defines the ranking of $\left(C,l\right)$ bundles

- If $U(C_1, l_1) > U(C_2, l_2)$, then (C_1, l_1) is strictly preferred to (C_2, l_2)
 - \therefore (C_1, l_1) bundle generate more happiness than (C_2, l_2) bundle
- If $U(C_1, l_1) = U(C_2, l_2)$, then indifferent between (C_1, l_1) and (C_2, l_2)
 - $\because (C_1, l_1)$ bundle generate same happiness as (C_2, l_2) bundle
- Note: level of utility is meaningless, only order matters!

Properties of Utility Function

1 Monotonicity: more is always better!

- If $C_1 > C_2$ and $l_1 > l_2$, then $U(C_1, l_1) > U(C_2, l_2)$
- **Order** Convexity: prefer diversified consumption bundles
 - $\bullet\,$ e.g. prefer food + leisure rather than overeating / oversleeping

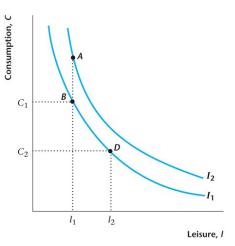
③ Normality: consumption and leisure are normal goods

- income $\uparrow \Rightarrow {\sf consumption} \uparrow$
- leisure is complicated: relates to income
 - the poor: less leisure means more labor income
 - the rich: more income means more leisure

Rep. of Utility Function: Indifference Curve

- Def: (C, l) bundles that yield the same utility level
- Monotonicity ⇒ downward sloping
- Convexity ⇒ diversity shown in comparison between point B and D

Figure 4.1 Indifference Curves



Preference Constraints Rep. of Utility Function: Indifference Curve (Cont.)

- Normality: Marginal Rate of Substitution
 - Marginal: for arbitrary small change in x-axis (leisure in this case)
 - rate of substitution: the amount on y-axis has to be sacrificed (consumption in this case)

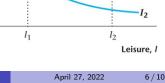
$$MRS_{l,C} = \frac{D_l U(C,l)}{D_C U(C,l)}, \quad (1)$$

where $D_x U(\cdot)$ is derivative of U w.r.t. *x*

Consumption, C C

D

Figure 4.2 MRS



 C_2

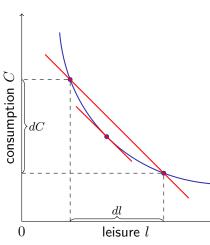
 $Slope = MRS_{LC}$

Appendix

Computing MRS

- little change in leisure $dl > 0 \Rightarrow$ change in utility $D_l U(C, l) dl$
- with the cost of income loss \Rightarrow consumption has to drop by dC < 0amount \Rightarrow change in utility $D_C U(C, l) dC$
- Stay on the IC ⇒ utility remain the same:

$$\begin{split} D_C U(C,l) dC + D_l U(C,l) dl &= 0 \\ \frac{dC}{dl} &= -\frac{D_l U(C,l)}{D_C U(C,l)} = -MRS_{l,C} \end{split}$$



Algebraic Example

Suppose $U(C,l) = \frac{C^{1-\sigma}}{1-\sigma} + \psi \ln l$, where σ and ψ are parameters. Then,

•
$$D_C U(C,l) = (1-\sigma) \frac{C^{1-\sigma-1}}{1-\sigma} = C^{-\sigma}$$

• Remember
$$\frac{d \ln l}{dl} = \frac{1}{l}$$
, $D_l U(C, l) = \frac{\psi}{l}$

•
$$MRS_{l,C} = \frac{D_l U(C,l)}{D_C U(C,l)} = \frac{\psi}{lC^{-\sigma}}$$

Constraints

Appendix

Budget Constraints

 \blacksquare Time: consumer has h hours per day, and allocate between leisure l and labor supply N^s

$$l + N^s = h \tag{2}$$

Budget: consumer cannot spend more than the income he/she has

- labor income: wage rate w times labor supply N^s , wN^s
- dividends income: consumer buys share of the firm, gain dividend π
- tax: consumer is subject to lump-sum taxes T

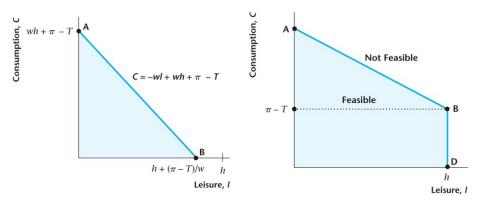
$$C \le wN^s + \pi - T \tag{3}$$

- Consumption is **numeraire**: price normalized to 1.
 - Imagine consumption goods as unit of account, ppl directly trade with consumption goods

Visualization of Budget Set

Figure 4.3 Representative Consumer's Budget Constraint when $T > \pi$ ("poor")

Figure 4.4 Representative Consumer's Budget Constraint when $T < \pi$ ("rich")



Calculus

Appendix

Calculus

Note on Calculus

Back

• Function: y = f(x), how y is determined by x

• E.g., y = 3x + 2: if x = 3, then 3 times 3 and plus 2 will get y = 11

 \blacksquare Differentiation: how changes in x results in change in y

• E.g.,
$$y = 3x + 2$$
,

Table: Table for how the value of x affects the value of y

Notice $\Delta x = 1 \implies \Delta y = 3 \implies \frac{\Delta y}{\Delta x} = 3$, change to differentiation notation, $\frac{dy}{dx} = 3$

Tips: $y = 3x^2 + 9x + 2$, look at terms with x, $dy = 3 \times 2x (dx) + 9 (dx) \implies \frac{dy}{dx} = 6x + 9$