Lecture 5 Representative Consumer Optimization and Application

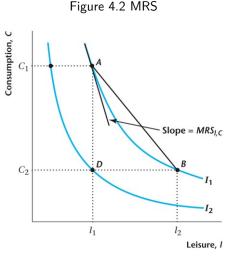
Hui-Jun Chen

The Ohio State University

September 9, 2023

Overview: Lecture 4 - 7

Provide micro-foundation for the macro implication (Lucas critique)


- Representative Consumer:
 - Lecture 4: preference, constraints
 - Lecture 5: optimization, application
 - Lecture 6: Numerical Examples
- Representative Firm:
 - Lecture 7: production, optimization, application

Review: MRS

- Normality: Marginal Rate of Substitution
 - Marginal: for arbitrary small change in *x*-axis (leisure in this case)
 - rate of substitution: the amount on *y*-axis has to be sacrificed (consumption in this case)

$$MRS_{l,C} = \frac{D_l U(C,l)}{D_C U(C,l)}, \quad (1)$$

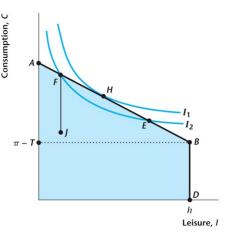
where $D_{x}U(\cdot)$ is derivative of U w.r.t. \boldsymbol{x}

Consumer's Problem

The consumer choose consumption and leisure bundle to achieve highest indifference curve, while still satisfying budget constraint

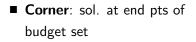
$$\max_{C,l} \quad U(C,l)$$
subject to $C \le w(h-l) + \pi - T$
(2)

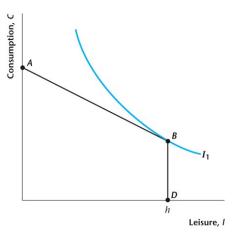
- **Rational behavior**: decision is made given preference & constraints
- Analysis: both graphically and algebraically


Experiment

Appendix

Graphical Analysis: Interior Solution


- Interior: sol. at middle of budget set, not end pts
- MRS must equal to real wage (MRS_{l,C} = w), WHY?
 - sacrificed consumption comes from the decrease of labor income
- Sol. at indifference curve tangent to budget set
- Convexity: E v.s. H & F v.s. H


Experiment

Graphical Analysis: Corner Solution

- MRS NOT equal to real wage $(MRS_{l,C} \neq w)$, WHY?
 - working limited to total h hours, "kink"
- Sol. is NOT tangent to indifference curve

Experiment

Appendix

Algebraic Analysis: Interior Solution

Recall consumer's problem:

$$\max_{C,l} \quad U(C,l)$$
subject to $C \le w(h-l) + \pi - T$
(3)

- Calculus is about derivative: not defined at "kink" ⇒ only interior sol.
- Sol. at the border of budget set \Rightarrow budget constraint is "=" (binding) Plug the budget constraint into utility function to replace C, we get

$$\max_{l} \quad U(w(h-l) + \pi - T, l) \tag{4}$$

Algebraic Analysis: Interior Solution (Cont.)

$$\max_{l} \quad U(w(h-l) + \pi - T, l)$$

Remember that now $C = w(h - l) + \pi - T$. Take first order condition w.r.t. l,

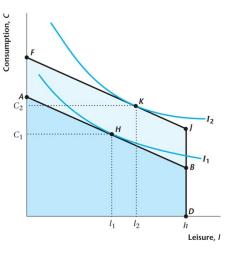
 $\underbrace{Derivative on C \text{ direction, chain rule}}_{D_{C}U(C,l) \times \frac{d[w(h-l)+\pi-T]}{dl}} + \underbrace{D_{l}U(C,l)}_{D_{l}U(C,l)} = 0 \quad (5)$ $D_{C}U(C,l) \times (-w) + D_{l}U(C,l) = 0 \quad (6)$ $w = \frac{D_{l}U(C,l)}{D_{C}U(C,l)} = MRS_{l,C} \quad (7)$

Note: $D_x f(\cdot)$ is a shorthand for $\frac{df(\cdot)}{dx}$, meaning differentiation of $f(\cdot)$ with respect to choice variable x.

Appendix

Build model for experiment

- We want to know what's the result of changes!
- Recall Lucas critique: need to understand individual behavior
- Consider two experiments:
 - ① direct increase in real income (no C and l trade off, pure income effect)
 - increase in real wage (income + substitution effect)


Appendix

Experiment 1: Increase in dividends / Decrease in Tax

- **Recall**: C & l are normal goods
- Income effect: income ↑ ⇒ normal goods ↑
- Increase in dividends or decrease in taxes are level shifts up in real income, regardless of actions
- Consumer increases consumption, reduces quantity of labor supplied (increase leisure).

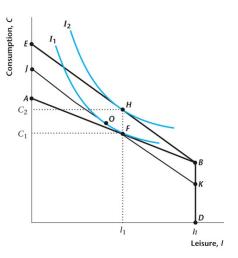
Figure 4.6 $\pi \uparrow / T \downarrow$

Experiment

Experiment

Experiment 2: Increase in Real Wage

Substitution effect: $w \uparrow$, leisure is


costly, sacrifice l for C

- budget line AB to JK, keeps F just affordable
- move along I₁ : new slope of budget line

Income effect: income $\uparrow \Rightarrow$ normal goods \uparrow

- budget line JK to EB, actual new budget line
- move up to I₂: higher utility possible

Figure 4.8 $w\uparrow$, both effects canceled out

Experiment

Appendix

Experiment 1 & 2: Labor Supply

Looking ahead to putting the pieces together in a full model:

- Solution to consumer problem defines the supply curve for the labor market!
- What assumption ensures this is increasing in the wage?
 - substitution effect: $w \uparrow \Rightarrow l \downarrow (\text{i.e., } N^S \uparrow)$
 - income effect: $w \uparrow \Rightarrow l \uparrow (\text{i.e., } N^S \downarrow)$
 - Income effect < substitution effect

Figure 4.10, LS on $\pi \uparrow / T \downarrow$ Real Wage, w NS

Appendix

Chain rule

Back

where

In the main slide, we applied chain rule to the C direction of the U(C, l). By binding budget constraints, we know $C(l) = w(h - l) + \pi - T$, i.e., consumption is a function of leisure.

$$\frac{d}{dl}U(C(l)) = \frac{dU(C,l)}{dC} \times \frac{dC(l)}{dl} = D_C U(C,l) \times D_l C(l)$$

$$D_l C(l) = -w.$$
(8)