Lecture 6
 Numerical Example

Hui-Jun Chen
The Ohio State University
September 9, 2023
Credit: Kyle Dempsey

Overview: Lecture 4-7

Provide micro-foundation for the macro implication (Lucas critique)

- Representative Consumer:
- Lecture 4: preference, constraints
- Lecture 5: optimization, application
- Lecture 6: Numerical Examples

■ Representative Firm:

- Lecture 7: production, optimization, application

1 Variable

In general, want to solve $\max _{x} f(x)$

- find "peak" of function
- at peak, slope is 0
- First order condition (FOC) is when the 1st order derivative, i.e., the slope is 0 :

$$
f^{\prime}\left(x^{*}\right)=0
$$

where x^{*} is the peak

2 Variables

In general, want to solve $\max _{x, y} g(x, y)$
function: $g(x, y)=-5(x-1)^{2}-8(y-2)^{2}+3$

- at peak, slope is 0 in both directions, i.e., the FOCs are

$$
\begin{aligned}
& D_{x} g\left(x^{*}, y^{*}\right)=0 \\
& D_{y} g\left(x^{*}, y^{*}\right)=0
\end{aligned}
$$

where the bundle $\left(x^{*}, y^{*}\right)$ is the peak

- Hard for my brain to process 3-D graph...resolution?

Visualizing 3-D function on 2-D plane

■ Contours:"standing" at the peak and look down

- e.g. map on Alltrails
- Fix the level of $g=-20$ (a horizontal slice of 3-D figure)
- Find x and y such that

$$
-20=-5(x-1)^{2}-8(y-2)^{2}+3
$$

- repeat for any value of g
- Exactly where indifference curve came from!

Solving 2 Variables Optimizations

$$
\begin{aligned}
& D_{x} g\left(x^{*}, y^{*}\right)=-10(x-1)=0 \\
& D_{y} g\left(x^{*}, y^{*}\right)=-16(y-2)=0
\end{aligned}
$$

- Intersection between 0 and line is the solution.
- For other functional form, $D_{x} g(x, y)$ can depend on y, and $D_{y} g(x, y)$ can depend on x
- May have constraints on the relationship between x and y

Utility Function in 3-D

Here $a=b=1$, where is the peak?

- Seems like to be at $C^{*}=10$ and $l^{*}=1$
- Recall monotonicity: more is better!
- What stops the consumer from choose
$(C, l)=(10,1) ?$

Utility Function + Budget Set in 3-D

Let $w=10$ and $h=1$, and the gray surface represents the border of the budget set.

- Consumers have to choose (C, l) bundles inside the budget set
- $(C, l)=(10,1)$ is outside of the budget set \Rightarrow not feasible
- Binding budget
constraint: candidates for optimal are points in gray
- Which one?

Collapsing 3-D Problem into 2-D: Slice

How? Binding budget constraint!

Binding: $\quad C=w(h-l)$

$$
U(C, l)=a \ln C+b \ln l
$$

Plug in: $\quad \tilde{U}(l)=a \ln (w(h-l))+b \ln l$

$$
\text { FOC: } \quad D_{l} \tilde{U}(l)=0
$$

$$
\begin{aligned}
& a \frac{-w}{w(h-l)}+b \frac{1}{l}=0 \\
& \frac{a}{h-l}=\frac{b}{l} \\
& l=\frac{b}{a+b} h
\end{aligned}
$$

$$
l=0.5, \text { let } C=5, u=0.91629 \ldots
$$

Collapsing 3-D Problem into 2-D: Contours

Recall contours, for any utility level $u, u=a \ln C+b \ln l \Rightarrow C=e^{\frac{u-b \ln l}{a}}$

- What is the highest u
 feasible given budget constraint?
- Or push up IC (increase u) such that IC is tangent to budget line:

$$
\begin{aligned}
-M R S_{l, C} & =-w \\
\frac{b C}{a l}=\frac{b w(h-l)}{a l} & =w \\
l & =\frac{b}{a+b} h
\end{aligned}
$$

2-D versions: Pros and Cons

Both 2-D formulations are delivering the same answer.
(1) Slice: 1 variable optimization problem, x-axis: l, y-axis: u

- Straightforward: operate on (l, u) plane, good for problem solving
- General: can collapse higher dimension problem
- Cons: lack of trade off between C and $l \Rightarrow$ economcis intuition
(2) Contours: 2 variable optimization problem, x-axis: l, y-axis: C
- Intuitive: direct trade off between C and l through $M R S_{l, C}$
- Cons: harder to solve and to generalize to higher dimension

Review: Models from Last Lecture

(1) Utility function: $U(C, l)=a \ln C+b \ln l$
(2) Budget constraint: $C \leq w(h-l)+\pi-T$
(3) After-tax dividend: $x=\pi-T$
(4) wage rate: w

- Benchmark: in section Consumer Example
- Experiment 1: increase in after-tax dividend: $x_{1}>x_{0}$
- Experiment 2: increase wage rate: $w_{2}>w_{0}$

Solve for Benchmark Case

■ Marginal utilities: $D_{C} U(C, l)=\frac{a}{C} ; D_{l} U(C, l)=\frac{b}{l}$.
■ Binding budget constraint: $C=w(h-l)+\pi-T$
■ Optimality: $M R S_{l, C}=w \Rightarrow \frac{D_{1} U(C, l)}{D_{C} U(C, l)}=w \Rightarrow w=\frac{b C}{a l}$
Plug binding budget constraints into optimality and solve for l :

$$
\begin{align*}
& w=\frac{b(w(h-l)+x)}{a l} \tag{1}\\
\Rightarrow & w a l=b(w(h-l)+x) \tag{2}\\
\Rightarrow & w a l=b w h-b w l+b x \tag{3}\\
\Rightarrow & (a+b) w l=b w h+b x \tag{4}\\
\Rightarrow & l=\frac{b}{a+b}\left(h+\frac{x}{w}\right) \tag{5}
\end{align*}
$$

Solve for Benchmark Case (Cont.)

Solve for C, we get

$$
\begin{align*}
& l=\frac{b}{a+b}\left(h+\frac{x}{w}\right) \Rightarrow w l=\frac{b}{a+b}(w h+x) \tag{6}\\
& C=w(h-l)+\pi-T=w(h-l)+x \tag{7}\\
\Rightarrow & C=w\left[h-\frac{b}{a+b}\left(h+\frac{x}{w}\right)\right]+x \tag{8}\\
\Rightarrow & C=w h-\frac{b}{a+b}(w h+x)+x \tag{9}\\
\Rightarrow & C=\frac{a}{a+b} w h+\frac{a}{a+b} x \tag{10}\\
\Rightarrow & C=\frac{a}{a+b}(w h+x) \tag{11}
\end{align*}
$$

Property for this utility function: consumer "split" fixed share of "wealth": $w l=s(w h+x)$, and $C=(1-s)(w h+x)$.

Solve for Experiment 1: $x \uparrow$

(l_{0}, C_{0}, x_{0}): benchmark value; (l_{1}, C_{1}, x_{1}): experiment 1 value.
With pure income effect, no change in real wage: $w_{1}=w_{0}=w$
The difference between experiment 1 and benchmark case is

$$
\begin{align*}
l_{1}-l_{0} & =\frac{b}{a+b}\left(h+\frac{x_{1}}{w}\right)-\frac{b}{a+b}\left(h+\frac{x_{0}}{w}\right) \tag{12}\\
& =\frac{b}{a+b}\left(\frac{x_{1}}{w}-\frac{x_{0}}{w}\right) \tag{13}\\
& =\frac{b}{(a+b) w}\left(x_{1}-x_{0}\right)>0 \tag{14}\\
C_{1}-C_{0} & =\frac{a}{a+b}\left(w h+x_{1}\right)-\frac{a}{a+b}\left(w h+x_{0}\right) \tag{15}\\
& =\frac{a}{a+b}\left(x_{1}-x_{0}\right)>0 \tag{16}
\end{align*}
$$

Namely, with pure income effect, both leisure and consumption increases.

Solve for Experiment 1: Graphical Intuition

$$
w_{1}=w_{0}=10 ; x_{1}=1>x_{0}=0
$$

Both leisure and consumption are higher

Budget constraint is "eased"

Solve for Experiment 2: $w \uparrow$

$\left(l_{0}, C_{0}, x_{0}\right)$: benchmark value; $\left(l_{2}, C_{2}, x_{2}\right)$: experiment 2 value. With both income and substitution effects, analysis is complicated:

$$
\begin{align*}
l_{2}-l_{0} & =\frac{b}{a+b}\left(h+\frac{x_{2}}{w_{2}}\right)-\frac{b}{a+b}\left(h+\frac{x_{0}}{w_{0}}\right) \tag{17}\\
& =\frac{b}{a+b}\left(\frac{x_{2}}{w_{2}}-\frac{x_{0}}{w_{0}}\right) \gtreqless 0 \tag{18}\\
C_{2}-C_{0} & =\frac{a}{a+b}\left(w_{2} h+x_{2}\right)-\frac{a}{a+b}\left(w_{0} h+x_{0}\right) \tag{19}\\
& =\frac{a}{a+b}\left(h\left(w_{2}-w_{0}\right)+\left(x_{2}-x_{0}\right)\right)>0 \tag{20}
\end{align*}
$$

Although the consumption is certainly increasing, the change in leisure is uncertain \Rightarrow need numerical solution (put numbers in).

Solve for Experiment 2: $w \uparrow$ (Cont.)

Let $w_{2}=15>w_{0}=10 ; x_{2}=x_{0}=0$.

$$
\begin{equation*}
l_{2}-l_{0}=\frac{b}{a+b}\left(\frac{x_{2}}{w_{2}}-\frac{x_{0}}{w_{0}}\right)=\frac{b}{a+b}\left(\frac{0}{15}-\frac{0}{10}\right)=0 \tag{21}
\end{equation*}
$$

Leisure remain the same.
Compare with experiment $1, w_{2}=15>w_{1}=10 ; x_{2}=0<x_{1}=1 ; h=1$:

$$
\begin{align*}
l_{2}-l_{1} & =\frac{b}{a+b}\left(\frac{x_{2}}{w_{2}}-\frac{x_{1}}{w_{1}}\right)=\frac{b}{a+b}\left(\frac{0}{15}-\frac{1}{10}\right)<0 \tag{22}\\
C_{2}-C_{1} & =\frac{a}{a+b}\left(h\left(w_{2}-w_{1}\right)+\left(x_{2}-x_{1}\right)\right) \tag{23}\\
& =\frac{a}{a+b}(1(15-10)+(0-1))>0 \tag{24}
\end{align*}
$$

Experiment 2 v.s. Benchmark: Graphical Intuition

Total Effect

Income and Substitution Effect

