Lecture 14 The Real Business Cycle Model Part 1: Consumer

Hui-Jun Chen

The Ohio State University

July 7, 2022

Overview

- Recall that in Lecture 13, there is no production in dynamic model.
- The following 5 lectures is for **Real Business Cycle** (RBC) model:
 - Lecture 14: consumer
 - Lecture 15: firm
 - Lecture 16: competitive equilibrium
 - Lecture 17: formal example
 - Lecture 18: application to bring RBC to data

Real Business Cycle Model

- One of the workhorse frameworks in modern macroecnomics
- Real: not about *money* and *inflation*
- Business Cycle: mainly explain the short- and medium-term economics fluctuation ("business cycle frequency")
- Three agents: representative consumer, representative firm, and government
- All agents make static and dynamic decisions
- Larger "scale" model (i.e., more endogenous variables), but build upon the technique learned before

Analysis

Consumer: Constraints

There are 11 variables associated with the representative consumer:

- choice variables: consumption (C, C') and labor supply (N_S, N'_S)
 - leisure follows labor choice: $l = h N_S$, and $l' = h N'_S$
- \blacksquare owns the firm and get profits (π,π') and pays taxes (T,T')
- taken the equilibrium price as given (w, w', r)

Saving (S) at date 0 to construct lifetime budget constraint:

$$\begin{array}{rl} \text{today:} & C+S=wN_S+\pi-T\\ \text{tomorrow:} & C'=w'N'_S+\pi'-T'+(1+r)S\\ \text{lifetime constraint:} & C+\frac{C'}{1+r}=\underbrace{wN_S+\pi-T}_{\approx Y \text{ in last lecture}}+\underbrace{\underbrace{w'N'_S+\pi'-T'}_{1+r}}_{\approx Y \text{ in last lecture}}\end{array}$$

4/13

Analysis

Consumer: Preference

In general, utility fcn across consumption and labor choice can be mixed:

• e.g. mix C and N_S : GHH preferences

e.g. mix current and future: Epstein–Zin preferences
 Here, we are making simplified assumption: additive for both direction:

$$U(C, C', N_S, N'_S) = u(C) - v(N_S) + u(C') - v(N'_S).$$
(1)

To see why additive can simplify analysis, recall the MRS in both intratemporal (w/i period) and intertemporal (b/w period) substitution:

$$MRS_{l,C} = -MRS_{N_S,C} = \frac{v'(N_S)}{u'(C)}, \text{ and } MRS_{C,C'} = \frac{u'(C)}{u'(C')}.$$

Representative Consumer's Problem

$$\max_{C,C',N_S,N'_S} \quad u(C) - v(N_S) + u(C') - v(N'_S)$$

subject to $C + \frac{C'}{1+r} = wN_S + \pi - T + \frac{w'N'_S + \pi' - T'}{1+r}$ (2)

- Hard to analyze in graph, $\therefore 4$ choices variables $\Rightarrow 4$ -dim problem!
- Yet, usual procedure in Calculus still works!
- Why? Because partial derivatives only looks the optimality in 1-dim
- \blacksquare Each FOC is optimal for 1-dim \Rightarrow solution satisfies ALL FOCs

Consumer's Optimality Conditions

■ Step 1: substitute *C* by budget constraint,

$$\max_{C',N_S,N'_S} u \left(wN_S + \pi - T + \frac{w'N'_S + \pi' - T' - C'}{1+r} \right) - v(N_S) + u(C') - v(N'_S)$$

• Step 2: find FOCs for C', N_S , and N'_S :

$$[C']: u'(C') - \frac{1}{1+r}u'(C) = 0 \Rightarrow u'(C') = \frac{1}{1+r}u'(C)$$

$$[N_S]: wu'(C) - v'(N_S) = 0 \Rightarrow wu'(C) = v'(N_S)$$

$$[N'_S]: \frac{w'}{1+r}u'(C) - v'(N'_S) = 0 \Rightarrow \frac{w'}{1+r}u'(C) = v'(N'_S)$$

Consumer's Optimality Conditions (Cont.)

■ Step 3: Compute multiple MRSs:

$$[C']: MRS_{C,C'} = \frac{u'(C)}{u'(C')} = 1 + r$$

$$[N_S]: -MRS_{N_S,C} = MRS_{l,C} = \frac{v'(N_S)}{u'(C)} = w$$

$$[N'_S]: MRS_{l',C} = \frac{v'(N'_S)}{u'(C)} = \frac{w'}{1+r}$$

• Step 4: Get C by putting C', N_S and N'_S back to budget constraint.

Knowledge Gain from Consumer's Problem

We have derived 4 optimality conditions for 4 choice variables:

$$\begin{split} [C']: & MRS_{C,C'} = \frac{u'(C)}{u'(C')} = 1 + r \\ [N_S]: & -MRS_{N_S,C} = MRS_{l,C} = \frac{v'(N_S)}{u'(C)} = w \\ [N'_S]: & MRS_{l',C} = \frac{v'(N'_S)}{u'(C)} = \frac{w'}{1+r} \\ \text{budget constraint}: & C = wN_S + \pi - T + \frac{w'N'_S + \pi' - T' - C'}{1+r} \end{split}$$

Recall that there are 11 variables, so still 7 variables remain. They are:

■ 3 endogenous prices: w, w', r

• 4 endogenous quantities that shift lifetime wealth: π, π', T, T' Need to know how consumer response to endogenous quantities! Hui-Jun Chen (OSU) Lecture 14 July 7, 2022

Current Labor Supply and Current Wage

Figure 11.1 The Representative Consumer's Current Labor Supply Curve

Assumption N1: current labor supply \uparrow in current wage

- Recall two effects of wage on labor:
 - income (I): $l \uparrow, N_S \downarrow$
 - substitution (S): $l \downarrow, N_S \uparrow$
- N1 suggests that substitution effect > income effect
- data: (I) and (S) cancel out in long-run, while RBC focus on short- and medium run!

July 7, 2022

Assumption N2: current labor supply

 \uparrow as real interest rate \uparrow

Analysis

11/13

Current Labor Supply and Real Interest Rate

Figure 11.2 Real Interest Rate \uparrow Shifts the Current Labor Supply Curve to the Right

Current Labor Supply and Wealth

Figure 11.3 Effects of an Increase in Lifetime Wealth

current labor supply N_S

Assumption N3: current labor supply \downarrow as lifetime wealth \uparrow

 only pure income effect on normal goods (consumption & leisure), and thus labor decreases

0

Analysis

Summary of Effect on Labor Supply

• Assumption N1: current labor supply \uparrow in current wage

- $\frac{dN_S}{dw} > 0$
- Assumption N2: current labor supply \uparrow as real interest rate \uparrow
 - $\frac{dN_S}{dr} > 0$
- **Assumption N3**: current labor supply \downarrow as lifetime wealth \uparrow
 - $\frac{dN_S}{dx} < 0$, where $x = \pi T$.

All statements are properties about **supply curve**, not equilibrium quantities!