ECON 4002.01 Problem Set 4 Hui-Jun Chen

Question 1

Consider a model that is **similar to** (not exactly the same!) Lecture 17 RBC model but with several differences:

1. Now consumer values leisure in date 1. The lifetime utility function is given by

$$U(C, N, C', N') = \ln C + \ln(1 - N) + \ln C' + \ln(1 - N').$$

First, we start by defining the competitive equilibrium:

(1) Given the exogenous quantities _____ (D)

(A) $\{G, G', z, z', K\}$ (B) $\{G, G', z, z'\}$ (C) $\{G, G'\}$ (D) $\{z, z', K\}$

a competitive equilibrium is a set of

(2) consumer choices _____

(A)
$$\{C, C', N_S, S\}$$

(B) $\{N_S, N'_S, l, l', S\}$
(C) $\{C, C', N_S, N'_S, l, l', S\}$
(D) $\{C, C', S\}$

(3) firm choices _____ (A) $\{Y, Y', N_D, N'_D, I, K'\}$

(C) $\{Y, Y', \pi, \pi', I, K'\}$

(B) { $Y, Y', \pi, \pi', N_D, N'_D, I, K'$ } (D) { $\pi, \pi', N_D, N'_D, I, K'$ }

(4) government choices _____

(A)
$$\{G, G', T, T', B\}$$

(B) $\{G, G', B\}$
(C) $\{G, G', T, T'\}$
(D) $\{T, T', B\}$

5 and prices _____

(A) $\{w, w', q\}$ (B) $\{w, w', r\}$ (C) $\{q, q', r\}$ (D) $\{r, r', q\}$

such that

1. (6) Taken _____ (A) $\{w, w', r, \pi, \pi'\}$ (B) $\{w, w', r\}$ (C) $\{w, w', \pi, \pi'\}$ (D) $\{r, \pi, \pi'\}$

as given,

(7) consumer chooses _____ (A) $\{r', N_S, N'_S\}$ (B) $\{C', K, K'\}$ (C) $\{r', K, K'\}$ (D) $\{C', N_S, N'_S\}$

to solve

$$\max_{C',N_S,N'_S} \ln\left(wN_S + \pi - T + \frac{w'N'_S + \pi' - T' - C'}{1+r}\right) + \ln C' + \ln(1-N_S) + \ln(1-N'_S)$$

where we can back out $\{C, S, l, l'\}$.

(8) Taken _____ as given,

- (A) $\{w, w', q\}$ (B) $\{w, w', r\}$
- (C) $\{q, q', r\}$ (D) $\{r, r', q\}$

(9) firm chooses _____

(A) $\{H_D, H'_D, K'\}$ (B) $\{N_D, N'_D, C'\}$ (C) $\{N_D, N'_D, K'\}$ (D) $\{\pi, \pi', K'\}$

to solve

$$\max_{N_D, N'_D, K'} z K^{\alpha} N_D^{1-\alpha} - w N_D - [K' - (1-\delta)K] + \frac{z'(K')^{\alpha} (N'_D)^{1-\alpha} - w' N'_D + (1-\delta)K'}{1+r}$$

where we can back out $\{Y, Y', \pi, \pi', I\}$.

3.

- (10) Taxes and deficit satisfy _____
 - (A) $T + \frac{T'}{1+q} = G + \frac{G'}{1+q}$ (B) $T + \frac{T'}{1+r} = G + \frac{G'}{1+r}$ (C) $T + \frac{T'}{1+w} = G + \frac{G'}{1+w}$ (D) $\pi + \frac{\pi'}{1+r} = G + \frac{G'}{1+r}$

and G - T = B.

4. All markets clear: (i) labor, $N_S = N_D \& N'_S = N'_D$; (ii) goods, Y = C + G & Y' = C' + G'; (iii) bonds at date 0, S = B.

After defining the competitive equilibrium, now we are going to solve this model. Step 1: Labor market

From the lecture, we know that the current marginal product of labor (MPN)(11) will equal to current wage. MPN =_____

(A)
$$z'(1-\alpha) \left(\frac{K}{N_D}\right)^{\alpha}$$
 (B) $z(1-\alpha) \left(\frac{K'}{N_D}\right)^{\alpha}$
(C) $z'(1-\alpha) \left(\frac{K'}{N'_D}\right)^{\alpha}$ (D) $z(1-\alpha) \left(\frac{K}{N_D}\right)^{\alpha}$

(12) and thus the current labor demand N_D given the wage w is _____

(A)
$$N_D = \left(\frac{z'(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$
 (B) $N_D = \left(\frac{z(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K$
(C) $N_D = \left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$ (D) $N_D = \left(\frac{z'(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K'$

(13) From the lecture, we know that the future marginal product of labor (MPN') will equal to future wage. MPN' =_____

(A)
$$z'(1-\alpha) \left(\frac{K}{N_D}\right)^{\alpha}$$
 (B) $z(1-\alpha) \left(\frac{K'}{N_D}\right)^{\alpha}$
(C) $z'(1-\alpha) \left(\frac{K'}{N'_D}\right)^{\alpha}$ (D) $z(1-\alpha) \left(\frac{K}{N_D}\right)^{\alpha}$

(14) and thus the future labor demand N'_D given the future wage w' is _____

(A)
$$N'_D = \left(\frac{z'(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$
 (B) $N'_D = \left(\frac{z(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K$
(C) $N'_D = \left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$ (D) $N'_D = \left(\frac{z'(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K'$

In the labor supply part, we know that the marginal rate of substitution between leisure and consumption $MRS_{l,C}$ equals to the wage.

(15)
$$MRS_{l,C} =$$

(A) $\frac{C}{1-N_S}$ (B) $\frac{1-N_S}{C}$
(C) $\frac{N_S}{1-C}$ (D) $\frac{N'_S}{1-N_S}$

In the saving part, we know that the marginal rate of substitution between current and future consumption $MRS_{C,C'}$ equals to the real interest rate (1 + r)

(17) Solve for C', we get _____

(A) $C' = (1+r)N_S$ (B) C' = (1+r)C(C) C' = (1+r)C'(D) $C' = (1+r)N'_S$

Start from now we denote the income that is not directly affected by consumer choice as x and x', similar to Lecture 17.

(18) Substitute C' using your answer in 17 into the budget constraint and solve for C, we get _____

(A)
$$C = \frac{1}{2} \left(w N_S + x + \frac{x'}{1+r} \right)$$
 (B) $C = \frac{1}{1+\beta} \left(w N_S + x + \frac{x'}{1+r} \right)$
(C) $C = \frac{1}{1+\beta} \left(w N_S + C' + \frac{C'}{1+r} \right)$ (D) $C = \frac{1}{2} \left(w N_S + N'_S + \frac{N'_S}{1+r} \right)$

- (19) Substitute your answer of 18 into your answer in 15, we can solve the labor supply $N_S = _$
 - (A) $\frac{1}{3} \frac{2}{3w} \left(x + \frac{x'}{1+r} \right)$ (B) $\frac{2}{3} \frac{w}{3} \left(x + \frac{x'}{1+r} \right)$ (C) $\frac{2}{5} - \frac{5}{3w} \left(x + \frac{x'}{1+r} \right)$ (D) $\frac{2}{3} - \frac{1}{3w} \left(x + \frac{x'}{1+r} \right)$
- (20) From 12 we solve for labor demand N_D. From 19 we solve for labor supply N_S. If for this question we let α = 1, then we can solve the wage w as a function of real interest rate r as _____
 - (A) $w^*(r) = x + \frac{x'}{1+r}$ (B) $w^*(r) = \frac{1}{3} \left(x + \frac{x'}{1+r} \right)$ (C) $w^*(r) = \frac{1}{2} \left(x + \frac{x'}{1+r} \right)$ (D) $w^*(r) = zK \left(x + \frac{x'}{1+r} \right)$

For the output demand curve, we know that the optimal investment schedule is given by $MPK' - \delta = r$.

- (21) We know that the MPK' is _____
 - (A) $\alpha z K^{\alpha-1} N^{1-\alpha}$ (B) $\alpha z' K'^{\alpha-1} N'^{1-\alpha}$
 - (C) $(1-\alpha)z'K'^{\alpha}N'^{-\alpha}$ (D) $\alpha zK^{\alpha}N^{-\alpha}$

(22) We can solve the optimal investment schedule and get K' =_____

(A)
$$\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}} N'$$
 (B) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} N$
(C) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} N'$ (D) $\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}} N$

(23) and the investment I_D is determined by capital accumulation process $K' - (1 - \delta)K$ and is _____

(A)
$$\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}} N' - (1-\delta)K$$
 (B) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} N - (1-\delta)K$
(C) $\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}} N - (1-\delta)K$ (D) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} N' - (1-\delta)K$

- (24) Based on your answer in 23, the investment demand I_D is _____ in future labor N'.
 - (A) increasing (B) no related (C) decreasing