Asset Pricing in Production Economy

Hui-Jun Chen
The Ohio State University

November 29, 2022

Overview

How does share price comove with GDP?

- We extend Lucas (1978) to production economy \Rightarrow firms
- firms are active player in macro: investment v.s. GDP volatility
- corporate finance: firm debt? capital investment?
- human resource: hiring / lay off employee?
- international economics: multi-nation enterprise? FDI?
- To be able to reach some conclusion, we need simplification:
- similar setting as Lucas (1978), representative HH \& firm
- firm pays dividend \Leftarrow firm are DRS
- labor-only technology \Rightarrow no other intertemporal asset other than share.

Firm Problem

Dividend and Wage

- Production function: $y=z n^{\alpha}$, where z is TFP shock, and $\alpha \in(0,1)$.
- Firm's profit maximization problem: $\max _{n} z n^{\alpha}-w n$
- FOC: $w=\alpha z n^{\alpha-1}$

■ Wage bill: $w n=\alpha z n^{\alpha}=\alpha y$

- Assume firm all profits as dividend, $d=y-w n=(1-\alpha) y$

Household's Problem

Household Problem

Assume HH value leisure, and thus

$$
\begin{align*}
& V(s, z)=\max _{c \geq 0, s^{\prime} \geq 0, n \geq 0} \log c+\psi(1-n)+\beta \mathbb{E}_{z^{\prime} \mid z}\left[V\left(s^{\prime}, z^{\prime}\right)\right] \tag{1}\\
& \text { s.t. } \quad c+p s^{\prime} \leq(d+p) s+w n \tag{2}
\end{align*}
$$

We know in equilibrium / steady state, three markets need to clear:
(1) find w such that labor demand $=$ labor supply
(2) find p such that $s=1$
(3) by Walras' law, goods market clear, implying $c=y$.

Solve Household Problem

Using the same solution technique,

$$
\begin{align*}
V(s, z)= & \max _{s^{\prime}, c, n} \log c+\psi(1-n)+\beta \mathbb{E}_{z^{\prime} \mid z}\left[\log c^{\prime}+\psi\left(1-n^{\prime}\right)\right] \tag{3}\\
& +\beta^{2} \mathbb{E}_{z^{\prime} \mid z}\left[V\left(s^{\prime \prime}, z^{\prime \prime}\right)\right] \tag{4}
\end{align*}
$$

subject to

$$
\begin{align*}
& c+p s^{\prime} \leq(d+p) s+w n \tag{5}\\
& c^{\prime}+p^{\prime} s^{\prime \prime} \leq\left(d^{\prime}+p^{\prime}\right) s^{\prime}+w^{\prime} n^{\prime} \tag{6}
\end{align*}
$$

Replace c and c^{\prime} and get

$$
\begin{align*}
V(s, z)= & \max _{s^{\prime}, n} \log \left((d+p) s+w n-p s^{\prime}\right)+\psi(1-n) \tag{7}\\
& +\beta \mathbb{E}_{z^{\prime} \mid z}\left[\log \left(\left(d^{\prime}+p^{\prime}\right) s^{\prime}+w^{\prime} n^{\prime}-p^{\prime} s^{\prime \prime}\right)+\psi\left(1-n^{\prime}\right)\right] \tag{8}\\
& +\beta^{2} \mathbb{E}_{z^{\prime} \mid z}\left[V\left(s^{\prime \prime}, z^{\prime \prime}\right)\right] \tag{9}
\end{align*}
$$

First Order Condition

$$
\begin{align*}
V(s, z)= & \max _{s^{\prime}, n} \log \left((d+p) s+w n-p s^{\prime}\right)+\psi(1-n) \tag{10}\\
& +\beta \mathbb{E}_{z^{\prime} \mid z}\left[\log \left(\left(d^{\prime}+p^{\prime}\right) s^{\prime}+w^{\prime} n^{\prime}-p^{\prime} s^{\prime \prime}\right)+\psi\left(1-n^{\prime}\right)\right] \tag{11}\\
& +\beta^{2} \mathbb{E}_{z^{\prime} \mid z}\left[V\left(s^{\prime \prime}, z^{\prime \prime}\right)\right] \tag{12}
\end{align*}
$$

FOC:

$$
\begin{array}{ll}
{[n]:} & \frac{w}{c}=\psi \\
{\left[s^{\prime}\right]:} & \frac{1}{c} \cdot p=\beta \mathbb{E}_{z^{\prime} \mid z}\left[\frac{1}{c^{\prime}} \cdot\left(d^{\prime}+p^{\prime}\right)\right] \tag{14}
\end{array}
$$

Equilibrium Outcome

Optimality Conditions

$$
\begin{array}{ll}
{[n]:} & \frac{w}{c}=\psi \Rightarrow w=\psi c \\
{\left[s^{\prime}\right]:} & \frac{1}{c} \cdot p=\beta \mathbb{E}_{z^{\prime} \mid z}\left[\frac{1}{c^{\prime}} \cdot\left(d^{\prime}+p^{\prime}\right)\right] \tag{16}
\end{array}
$$

$w=w,(15)$ equals to (17), and $c=y$ yields

$$
\begin{align*}
\psi y=\alpha \frac{y}{n} & \Rightarrow n=\frac{\alpha}{\psi} \Rightarrow y=z n^{\alpha}=z\left(\frac{\alpha}{\psi}\right)^{\alpha} \tag{18}\\
& \Rightarrow w=\alpha z n^{\alpha-1}=\alpha z\left(\frac{\alpha}{\psi}\right)^{\alpha-1} \tag{19}\\
& \Rightarrow d=(1-\alpha) y=(1-\alpha) z\left(\frac{\alpha}{\psi}\right)^{\alpha} \tag{20}
\end{align*}
$$

Share Euler Equation

Focus on (16), we can use $c^{\prime}=y^{\prime}$ as well as $d^{\prime}=(1-\alpha) y^{\prime}$ to simplify:

$$
\begin{align*}
\frac{p}{y} & =\beta \mathbb{E}_{z^{\prime} \mid z}\left[\frac{p^{\prime}}{y^{\prime}}+\frac{(1-\alpha) y^{\prime}}{y^{\prime}}\right] \tag{21}\\
& =\beta(1-\alpha)+\beta \mathbb{E}_{z^{\prime} \mid z}\left[\frac{p^{\prime}}{y^{\prime}}\right] \tag{22}
\end{align*}
$$

Somehow you got a prophecy from the spirit and his/her voice tells you to guess $\frac{p}{y} \equiv \Lambda$, a constant over time regardless of TFP shock. Is that true?

$$
\begin{align*}
& \Lambda=\beta(1-\alpha)+\beta \mathbb{E}_{z^{\prime} \mid z}[\Lambda]=\beta(1-\alpha)+\beta \Lambda \tag{23}\\
& \Lambda=\frac{\beta(1-\alpha)}{1-\beta} \tag{24}
\end{align*}
$$

It true B

Intepretation

Stock price to GDP ratio, $\frac{p}{y}$, is constant over time, which implies
(1) stock price is procyclical: $\boldsymbol{(}$ and $\boldsymbol{\downarrow}$ with TFP z,
(2) the percentage std of stock price matches percentage std of dividend,
(3) stock is risky: $p=\frac{\beta(1-\alpha)}{1-\beta} y \Rightarrow$ requires $(+)$ risk premium

- $e\left(z, z^{\prime}\right)=\frac{d^{\prime}+p^{\prime}}{p}=\frac{(1-\alpha) y^{\prime}+\Lambda y^{\prime}}{\Lambda y}=\frac{\frac{1-\alpha}{1-\beta} y^{\prime}}{\frac{\beta(1-\alpha)}{1-\beta} y}=\frac{1}{\beta} \frac{y^{\prime}}{y}$
- $\operatorname{SDF}=\frac{\beta u^{\prime}\left(c^{\prime}\right)}{u^{\prime}(c)}=\beta \frac{y}{y^{\prime}}$
- Risk premium $=\frac{\mathbb{E}_{t}\left[e\left(z, z^{\prime}\right)-R_{t}\right]}{R_{t}}=-\operatorname{cov}_{t}\left[S D F, e\left(z, z^{\prime}\right)\right]>0$

The very times firm shares pay high is when your consumption is low!

Appendix

References I

Lucas, Robert E. (1978) "Asset Prices in an Exchange Economy," Econometrica, 46 (6), 1429, 10.2307/1913837.

