Lecture 7 Representative Firm

Hui-Jun Chen

The Ohio State University

May 31, 2022

Overview: Lecture 4 - 7

Provide micro-foundation for the macro implication (Lucas critique)

- Representative Consumer:
 - Lecture 4: preference, constraints
 - Lecture 5: optimization, application
 - Lecture 6: Numerical Examples
- Representative Firm:
 - Lecture 7: production, optimization, application

Production Function

Production function describes the technology possibility for converting inputs into outputs.

Representative firm produces output \boldsymbol{Y} with production function

$$Y = zF(K, N^d) \tag{1}$$

- *Y*: output (consumption goods)
- *z*: total factor productivity (TFP) (productivity for the economy)
- K: capital (fixed for now, \therefore 1-period model)
- N^d : labor demand (chose by firm, d represents demand)

Properties of Production Function: Marginal Product

- Marginal product: how much $Y \uparrow$ by one unit of $K \uparrow$ or $N^d \uparrow$.
 - Marginal product of capital (MPK): $zD_KF(K, N^d)$
 - Marginal product of labor (MPN): $zD_NF(K, N^d)$
- Marginal product is positive and diminishing:
 - **Positive MP**: $Y \uparrow$ if either $K \uparrow$ or $N^d \uparrow$
 - more inputs result in more output
 - **Diminishing MP**: MPK \downarrow as $K \uparrow$; MPN \downarrow as $N^d \uparrow$
 - the rate/speed of output increasing is decreasing
- Increasing marginal cross-products:
 - e.g. MPK \uparrow as $N \uparrow$; MPN \uparrow as $K \uparrow$

Properties of Production Function: Return to Scale

- **Return to scale**: how Y will change when both K and N increase
- Constant return to scale (CRS): $xzF(K, N^d) = zF(xK, xN^d)$
 - small firms are as efficient as large firms
- Increasing return to scale (IRS): $xzF(K, N^d) > zF(xK, xN^d)$
 - small firms are less efficient than large firms
- **Decreasing return to scale (DRS)**: $xzF(K, N^d) < zF(xK, xN^d)$
 - small firms are more efficient than large firms

Experiments

Optimization

Example: Cobb-Douglas Production Function

- **Cobb-Douglas**: $zF(K, N) = zK^{\alpha}N^{1-\alpha}$, α is the share of capital contribution to output
- Positive MPK & MPN:
 - MPK = $D_K z F(K, N) = z \alpha K^{\alpha 1} N^{1 \alpha} = z \alpha \left(\frac{K}{N}\right)^{\alpha 1} > 0$
 - MPN = $D_N z F(K, N) = z(1 \alpha) K^{\alpha} N^{-\alpha} = z(1 \alpha) \left(\frac{K}{N}\right)^{\alpha} > 0$
- Diminishing MP:
 - For K, $D_K \left(z \alpha K^{\alpha 1} N^{1 \alpha} \right) = z \alpha (\alpha 1) K^{\alpha 2} N^{1 \alpha} < 0$
 - For N, $D_N(z(1-\alpha)K^{\alpha}N^{-\alpha})=z(1-\alpha)(-\alpha)K^{\alpha}N^{-\alpha-1}<0$

Increasing marginal cross-product:

• For MPK, $D_N(z\alpha K^{\alpha-1}N^{1-\alpha})=z\alpha(1-\alpha)K^{\alpha-1}N^{-\alpha}>0$

• For MPN,
$$D_K(z(1-\alpha)K^{\alpha}N^{-\alpha}) = z(1-\alpha)\alpha K^{\alpha-1}N^{-\alpha} > 0$$

Example: Cobb-Douglas and Return to Scale

Let's assume that Cobb-Douglas production is $zF(K, N) = zK^{\alpha}N^{\beta}$ So if both inputs are increasing by twice, then

$$zF(2K,2N) = z(2K)^{\alpha}(2N)^{\beta} = 2^{\alpha} \times 2^{\beta} z K^{\alpha} N^{\beta}$$
$$= 2^{\alpha+\beta} z K^{\alpha} N^{\beta} = 2^{\alpha+\beta} Y$$

 \blacksquare If $\alpha+\beta=1,$ then zF(2K,2N)=2Y, constant return to scale

- Ø If $\alpha+\beta<1,$ then $zF(2K,2N)=2^{\alpha+\beta}Y<2Y,$ decreasing return to scale
- (3) If $\alpha + \beta > 1$, then $zF(2K, 2N) = 2^{\alpha + \beta}Y > 2Y$, increasing return to scale

Visualization

Diminishing Marginal Product

Increasing Marginal Cross-product

May 31, 2022

Visualization: Changes in TFP

TFP in Data

Solow Residual for US

We cannot see TFP, how to measure it?

- Assume Cobb-Douglas production function: Y = zK^αN^{1-α}
- By data, $K/Y = 0.3 \Rightarrow$ $\alpha = 0.3$
- Can observe K, Y, N in data:

$$z = \frac{Y}{K^{0.3} N^{0.7}}$$

10/13

Firm's Problem: Profit Maximization

Firm maximizes profit (π) , which is the revenue minus the wage bill:

$$\pi = \max_{N^d} zF(K, N^d) - wN^d \tag{2}$$

• **Constraints**: $N^d > 0$, relatively simple!

Cobb-Douglas:
$$zF(K, N^d) = zK^{\alpha}(N^d)^{1-\alpha}$$
 (3)

FOC:
$$w = z(1-\alpha)K^{\alpha}(N^d)^{-\alpha}$$
 (4)

$$(N^d)^{\alpha} = \frac{z(1-\alpha)K^{\alpha}}{w}$$
(5)

Labor demand:
$$N^d = \left(\frac{z(1-\alpha)K^{\alpha}}{w}\right)^{\frac{1}{\alpha}} = \left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}}K$$
 (6)

As $w \uparrow$, $N^d \downarrow \Rightarrow$ downward-sloping demand.

Experiment 1: Payroll Tax

Payroll tax: suppose firms have to pay additional per-unit tax t > 0 on the wage bill, then

Firm Problem:
$$\max_{N^d} z K^{\alpha} (N^d)^{1-\alpha} - w(1+t)N^d$$
(7)
FOC:
$$w(1+t) = z(1-\alpha)K^{\alpha} (N^d)^{-\alpha}$$
(8)
$$N^d = K \left(\frac{z(1-\alpha)}{w(1+t)}\right)^{\frac{1}{\alpha}}$$
(9)

• wage $\uparrow: w \uparrow \Rightarrow N^d \downarrow$ (same as benchmark)

- tax \uparrow : $t \uparrow \Rightarrow N^d \downarrow$
- capital $\uparrow: K \uparrow \Rightarrow N^d \uparrow \Rightarrow$ what if firm can also choose K?

Experiment 2: Choice of Capital

Capital rent: suppose that firm can choose capital level but have to pay r of per-unit rent.

Firm Problem:
$$\max_{K,N^d} z K^{\alpha} (N^d)^{1-\alpha} - rK - wN^d$$
(10)
FOC on N: $w = z(1-\alpha)K^{\alpha} (N^d)^{-\alpha}$ (11)
FOC on K: $r = z\alpha K^{\alpha-1} (N^d)^{1-\alpha}$ (12)
Divide (11) with (12) :
$$\frac{w}{r} = \frac{(1-\alpha)}{\alpha} \frac{K}{N^d}$$
(13)
Capital-Labor ratio:
$$\frac{K}{N^d} = \frac{w}{r} \frac{\alpha}{1-\alpha}$$
(14)

When firm can choose K, they choose both capital and labor such that (14) satisfied!