Lecture 16 The Real Business Cycle Model Part 3: Competitive Equilibrium

Hui-Jun Chen

The Ohio State University

July 6, 2023

Overview

- Recall that in Lecture 13, there is no production in dynamic model.
- The following 5 lectures is for **Real Business Cycle** (RBC) model:
 - Lecture 14: consumer
 - Lecture 15: firm
 - Lecture 16: competitive equilibrium
 - Lecture 17: formal example
 - Lecture 18: application to bring RBC to data

Review: Consumer's Problem

Taken $\{w,w',r,T,T',\pi,\pi'\}$ as given, a representative consumer chooses $\{C',N_S,N_S'\}$ to solve

$$\max_{C',N_S,N'_S} \quad u\left(wN_S + \pi - T + \frac{w'N'_S + \pi' - T' - C'}{1+r}\right), \qquad (1)$$
$$-v(N_S) + u(C') - v(N'_S)$$

which we can back out C, S, l, l'.

Review: Firm's Problem

Taken $\{w,w',r\}$ as given, a representative firm chooses $\{N_D,N'_D,K'\}$ to solve

$$\max_{N_D, N'_D, K'} zF(K, N_D) - wN_D - [K' - (1 - \delta)K] + \frac{z'F(K', N'_D) - w'N'_D + (1 - \delta)K'}{1 + r},$$
(2)

which we can back out Y,Y',π,π',I

Government Budget Constraint

Government behaves exactly the same in two-period model:

- current budget constraint: G = T + B
- \blacksquare future budget constraint: G' + (1+r)B = T'

■ lifetime budget constraint: $G + \frac{G'}{1+r} = T + \frac{T'}{1+r}$ Taken $\{r\}$ as given, government satisfy lifetime budget constraint by choosing $\{T, T', B\}$.

Market Clear

There are three markets to clear:

1 labor markets clear at each date determines wage:

- find w such that $N_S = N_D$
- find w' such that $N'_S = N'_D$
- goods markets clear at each date determines consumption and investment:
 - date 0 (today): Y = C + I + G
 - date 1 (tomorrow): Y' = C' + I' + G'

③ bonds market clears at date 0 determines real interest rate:

• find r such that S = B

Competitive Equilibrium: RBC Model

Given exogenous quantities $\{G, G', z, z', K\}$, a competitive equilibrium is a set of

Complete the Model

- $\label{eq:consumer choices} \ensuremath{\{C,C',N_S,N_S',l,l',S\}}, \ensuremath{$
- **2** firm choices $\{Y, Y', \pi, \pi', N_D, N'_D, I, K'\}$,

- such that

- consumer solves problems in (1),
- firm solves problems in (2),
- government balances its budget, and
- **4** all three markets clear.

Plan to analyze the Model

In the following slides, we are going to use graphical analysis on two markets in current period:

① current labor market: interaction of firm and consumer today

- similar to static model: labor supply and labor demand curves
- what's new: both curves reflect the dynamic tradeoff through interest rate
- Ourrent goods market: interaction of firm, consumer and government today
 - new: construct and analyze output supply and output demand curves

The Current Labor Market

Figure 11.14 Determination of Equilibrium in the Labor Market Given the Real Interest Rate r

- consumer optimality: ceteris paribus, $N^s \uparrow$ in w• N1: $\frac{dN^S}{dw} > 0$, substitution dominates income effect
- firm optimality: $N^d \downarrow$ in w
 - MPN = w, \because diminishing MPN
- account for multiple markets: intersect at N*(r)
 - note: top figure is given r,π
 - labor mkt clearing w is $w^{\ast}(r)$

Work with Model

The Current Labor Market (Cont.)

Figure 11.14 Determination of Equilibrium in the Labor Market Given the Real Interest Rate r

r increases?

- N2 (consumer): $N^s(r) \uparrow \text{ in } r$ $\Rightarrow w \downarrow, N^*(r) \uparrow$
- firm: $\therefore MPN = w$, same

consumer wealth increases?

- N3 (consumer): $N^{s}(r) \downarrow \Rightarrow w \uparrow, N^{*}(r) \downarrow$
- firm: nothing
- Bottom chart: $N^*(r) \to Y^*(r)$, output supply!

Work with Model

The Output Supply Curve

Using our insight from labor market, we can repeat out analysis for any real interest rate r

- Top: each r implies a different
 "labor market equilibrium", i.e.,
 w & N
- Middle: each N(r) yields production $Y^S(r)$
- Buttom: combined to show $\frac{dY^S}{dr} > 0$

Shifts in the Output Supply Curve

How do changes in exogenous variables shift $Y^{S}(r)$? Consider 2 cases:

• shift in lifetime wealth (for example, by gov't spending or taxation)

Ochange in total factor productivity (TFP) or capital stock

 $\bullet\,$ recall static model: with K fixed, these have the same effect

In each case, we can start our analysis with the current labor market.

Work with Model

Wealth and Output Supply

Suppose $G \uparrow$ or $G' \uparrow$.

- gov. budget: $T \uparrow$ or $T' \uparrow$
- \blacksquare consumer budget: $we \downarrow$
- N3: $dN^S/d(we) < 0$, $N^S(r) \uparrow$ (shift to the right, top panel)
- Middle: $N \uparrow \Rightarrow Y^S \uparrow$
 - bottom: combine, get rightward shift in output supply

Work with Model

TFP / Capital and Output Supply

Suppose TFP $z \uparrow$.

■ firm optimality: $MPN = zD_NF(\cdot) \uparrow \Rightarrow N^d \uparrow$

$$_{N)}$$
 Top: N^{d} shifts out \Rightarrow
 $w^{*}\uparrow, N^{*}\uparrow$

- Middle: production fcn shifts up, $\because z \uparrow$
- Bottom: combine, outward shift in output supply

14 / 19

Summary: Current Labor Market

We have constructed most of the model!

- labor market clearing, conditional on the interest rate
- trace through production function to get output supply curve Now we need to determine the equilibrium interest rate, r^* .
 - pair the output supply curve with the **output demand curve**
 - who demands goods today, and how much?
 - consumer: consumption $C^d(r, Y)$
 - firm: investment $I^d(r)$
 - government: expenditures G
 - use GDP accounting to get aggregate demand for goods

15 / 19

1

Current Goods Demand

$$D(r,Y) = C^d(r,Y) + I^d(r) + G$$

 \blacksquare plot $D(r,Y)$ on y-axis, Y on
x-axis

- C^d depends on wealth: $we = wN + \pi T + \frac{w'N' + \pi' T'}{1 + r}$, which depends on income.
- Not true for I and G
 - MPC < 1: flatter than 45° line
 - MPC diminishing: concave
 - combine: cross 45° line at $Y^d(r)$

Work with Model

Constructing Output Demand

How different r affect output demand?

- C2 (consumer): C^d(r) ↓ if r ↑(substitution effect dominates)
- firm: optimal investment schedule ($r = MPK' - \delta$), $r \uparrow$ $\Rightarrow MPK' \uparrow \Rightarrow I^d \downarrow$
- **gov**: no change, $\therefore G$ exogenous
- Combine:

() intersection with 45° line is lower

Constructing Output Demand (Cont.) Combine:

- **1** intersection with $45^{\circ}\downarrow$
- 2 output demand curve Y^d downward sloping
 Y^d(r) shift to the right if
 1 present value of taxes ↓ ⇒ C^d ↑
 - **2** future income $\uparrow \Rightarrow C^d \uparrow$
 - $\textbf{3} \text{ future TFP} \uparrow \Rightarrow I^d \uparrow$
- ④ current capital $\downarrow \Rightarrow I^d \uparrow$ Other changes (e.g., current TFP)
 are ambiguous in general!

Competitive Equilibrium

Hui-Jun Chen (OSU)

Lecture 16

July 6, 2023 19 / 19