Lecture 17
 The Real Business Cycle Model
 Part 4: Formal Examples

Hui-Jun Chen

The Ohio State University

July 6, 2023
Credit: Kyle Dempsey

Overview

- Recall that in Lecture 13, there is no production in dynamic model.
- The following 5 lectures is for Real Business Cycle (RBC) model:
- Lecture 14: consumer
- Lecture 15: firm
- Lecture 16: competitive equilibrium
- Lecture 17: formal example
- Lecture 18: application to bring RBC to data

Assumptions

- consumer: assume discounting factor $\beta \in(0,1)$ and utility function is

$$
\tilde{U}\left(C, N, C^{\prime}\right)=\ln C+\beta \ln C^{\prime}+\gamma \ln (1-N)
$$

where $\gamma>0$, and consumer endowed with 1 unit of time.

- we assume no dis-utility in date 1 labor supply to simplify analysis
- firm: assume production is Cobb-Douglas in both periods:

$$
Y=z K^{\alpha} N^{1-\alpha} \text { and } Y^{\prime}=z^{\prime} K^{\prime \alpha} N^{\prime 1-\alpha}
$$

where K is initial capital, TFP $z=1$, and depreciation $\delta \in(0,1)$
■ government: spend G and G^{\prime}, which is financed by lump-sum taxes T, T^{\prime} and deficit B

Competitive Equilibrium

Given exogenous quantities $\left\{G, G^{\prime}, z, z^{\prime}, K\right\}$, a competitive equilibrium is a set of (1) consumer choices $\left\{C, C^{\prime}, N_{S}, N_{S}^{\prime}, l, l^{\prime}, S\right\}$; (2) firm choices $\left\{Y, Y^{\prime}, \pi, \pi^{\prime}, N_{D}, N_{D}^{\prime}, I, K^{\prime}\right\}$; (3) government choices $\left\{T, T^{\prime}, B\right\}$, and (4) prices $\left\{w, w^{\prime}, r\right\}$ such that
(1) Taken $\left\{w, w^{\prime}, r, \pi, \pi^{\prime}\right\}$ as given, consumer chooses $\left\{C^{\prime}, N_{S}, N_{S}^{\prime}\right\}$ to solve

$$
\max _{C^{\prime}, N_{S}, N_{S}^{\prime}} \ln \left(w N_{S}+\pi-T+\frac{w^{\prime} N_{S}^{\prime}+\pi^{\prime}-T^{\prime}-C^{\prime}}{1+r}\right)+\beta \ln C^{\prime}+\gamma \ln \left(1-N_{S}\right)
$$

where we can back out $\left\{C, S, l, l^{\prime}\right\}$.
(2) Taken $\left\{w, w^{\prime}, r\right\}$ as given, firm chooses $\left\{N_{D}, N_{D}^{\prime}, K^{\prime}\right\}$ to solve $\max _{N_{D}, N_{D}^{\prime}, K^{\prime}} z K^{\alpha} N_{D}^{1-\alpha}-w N_{D}-\left[K^{\prime}-(1-\delta) K\right]+\frac{z^{\prime}\left(K^{\prime}\right)^{\alpha}\left(N_{D}^{\prime}\right)^{1-\alpha}-w^{\prime} N_{D}^{\prime}+(1-\delta) K^{\prime}}{1+r}$, where we can back out $\left\{Y, Y^{\prime}, \pi, \pi^{\prime}, I\right\}$.
(3) Taxes and deficit satisfy $T+\frac{T^{\prime}}{1+r}=G+\frac{G^{\prime}}{1+r}$ and $G-T=B$.
(4) All markets clear: (i) labor, $N_{S}=N_{D} \& N_{S}^{\prime}=N_{D}^{\prime}$; (ii) goods, $Y=C+G \&$ $Y^{\prime}=C^{\prime}+G^{\prime}$; (iii) bonds at date $0, S=B$.

Step 0: Result Implied by Assumptions

(1) $N_{S}^{\prime}=1$, since consumer don't value leisure at date 1 .

- If consumer don't value leisure, then choose the highest possible N_{S}^{\prime} can expand the budget set without decreasing the utility.
(2) $N_{D}^{\prime}=N_{S}^{\prime}=1$, by future labor market clearing.
(3) The future wage w^{\prime} is determined by $M P N^{\prime}$:

$$
M P N^{\prime}=z^{\prime}(1-\alpha)\left(\frac{K^{\prime}}{N_{D}^{\prime}}\right)^{\alpha}
$$

where $N_{D}^{\prime}=1$ leads to

$$
w^{\prime}=z^{\prime}(1-\alpha)\left(K^{\prime}\right)^{\alpha} .
$$

Step 1: Firm's Current Labor Demand

For date 0 labor demand,

$$
\begin{aligned}
& M P N=z(1-\alpha)\left(\frac{K}{N_{D}}\right)^{\alpha}=w \\
& \Rightarrow N_{D}=\left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K
\end{aligned}
$$

- $N_{D} \downarrow$ in current wage w
- $N_{D} \uparrow$ in current TFP z (dotted line)
- N_{D} invariant to interest rate

Step 2: Consumer \& Current Labor Supply

- labor supply at date 0 :

$$
\begin{aligned}
M R S_{l, C} & =-M R S_{N, C}=-\frac{D_{N} \tilde{U}(\cdot)}{D_{C} \tilde{U}(\cdot)} \\
& =-\frac{-\gamma /\left(1-N_{S}\right)}{1 / C}=\frac{\gamma C}{1-N_{S}}=w
\end{aligned}
$$

- Saving at date 0 :

$$
M R S_{C, C^{\prime}}=\frac{1 / C}{\beta / C^{\prime}}=\frac{C^{\prime}}{\beta C}=1+r \Rightarrow C^{\prime}=\beta(1+r) C
$$

- Recall $N_{S}^{\prime}=1$, we can denote the x notation to be the part of the income that is NOT directly affected by consumer choice:

$$
x=\pi-T \quad \text { and } \quad x^{\prime}=w^{\prime}+\pi^{\prime}-T^{\prime}
$$

Step 2: Consumer \& Current Labor Supply (Cont.)

Recall consumer budget constraint,

$$
\begin{aligned}
C+\frac{C^{\prime}}{1+r} & =w N_{S}+\pi-T+\frac{w^{\prime} N_{S}^{\prime}+\pi^{\prime}-T^{\prime}}{1+r} \\
C+\frac{\beta(1+r) C}{1+r} & =w N_{S}+x+\frac{x^{\prime}}{1+r} \\
C & =\frac{1}{1+\beta}\left(w N_{S}+x+\frac{x^{\prime}}{1+r}\right)
\end{aligned}
$$

plug back to labor supply condition:

$$
\begin{aligned}
w\left(1-N_{S}\right) & =\gamma C \\
w\left(1-N_{S}\right) & =\frac{\gamma}{1+\beta}\left(w N_{S}+x+\frac{x^{\prime}}{1+r}\right) \\
w N_{S}\left(\frac{\gamma}{1+\beta}+1\right) & =w-\frac{\gamma}{1+\beta}\left(x+\frac{x^{\prime}}{1+r}\right) \\
N_{S} & =\frac{1+\beta}{1+\beta+\gamma}-\frac{1}{w} \frac{\gamma}{1+\beta+\gamma}\left(x+\frac{x^{\prime}}{1+r}\right)
\end{aligned}
$$

Check: Labor Supply Assumptions

yellow dotted line is supposed to label as "low x "

Recall N1-N3 assumptions,

■ N1: labor supply \uparrow in wage, $d N_{S} / d w>0$ (all lines)

■ N2: labor supply \uparrow in real interest rate, $d N_{S} / d r>0$ (red v.s. blue)

- N3: labor supply \downarrow in lifetime wealth, $d N_{S} / d\left(x+x^{\prime}\right)<0$ (yellow v.s. blue)

Check: Labor Market Clearing

yellow dotted line is supposed to label as "low x "

higher interest rate (N2), lower lifetime wealth (N3) both shifts out labor supply curve:

- wage $w^{*}(r)$ decreases
- equilibrium quantity of labor $N^{*}(r)$ increases

Next: construct output supply curve

Step 3: Output Supply Curve

Labor market clearing requires:

$$
N_{S}=\frac{1+\beta}{1+\beta+\gamma}-\frac{1}{w} \frac{\gamma}{1+\beta+\gamma}\left(x+\frac{x^{\prime}}{1+r}\right)=\left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K=N_{D}
$$

...Yeah, it is very difficult to solve it by hand (actually cannot), but notice

- most of the terms are parameters: $\alpha, \beta, \gamma, z, K$,
- or lifetime wealth that needs gov: x and x^{\prime}.
- Out main goal is to solve for $w^{*}(r)$!
- solve real wage w as a function of real interest rate r
- then, back out $N^{*}(r)$ and $Y_{S}(r)$
- get $N^{*}(r)$ by plug $w^{*}(r)$ into either N_{D} or N_{S}
- get $Y_{S}(r)$ by plug $N^{*}(r)$ into $z K^{\alpha}\left(N^{*}\right)^{1-\alpha}$

Check: Output Supply Curve

Confirm our intuition:

- $r \uparrow$ leads to $w \downarrow$ and $N^{*}(r) \uparrow$
- given positive $M P N$ and fixed K, more labor means more production, so output supply shifts up.

Step 4: Output Demand Curve

Recall that the date 0 output demand curve are composite of
■ government spending G and G^{\prime} : exogenous (easy!)

- firm's investment demand $I_{D}(r)$ (next slide)
- consumer's consumption demand $C_{D}(r, Y)$:
- recall income-expenditure identity, total income $=$ total demand,

$$
\begin{aligned}
C+\frac{C^{\prime}}{1+r} & =w N+\pi-T+\frac{w^{\prime} N^{\prime}+\pi^{\prime}-T^{\prime}}{1+r} \\
& \because \pi=Y-w N-I ; \pi^{\prime}=Y^{\prime}-w^{\prime} N^{\prime}+(1-\delta) K^{\prime} \\
(1+\beta) C & =Y+\frac{Y^{\prime}}{1+r}-I+\frac{(1-\delta) K^{\prime}}{1+r}-\left(T+\frac{T^{\prime}}{1+r}\right)
\end{aligned}
$$

- given r, we can solve consumption-saving problem.

Firm's Optimal Investment

Recall
■ labor market clearing at date 1: $N_{D}^{\prime}=N_{S}^{\prime}=N^{\prime}=1$, and

- $M P K$ at date 1: $M P K^{\prime}=z^{\prime} \alpha\left(K^{\prime}\right)^{\alpha-1}$.

Thus, according to optimal investment schedule,

$$
\begin{aligned}
M P K^{\prime}-\delta & =r \\
z^{\prime} \alpha\left(K^{\prime}\right)^{\alpha-1} & =r+\delta \\
K^{\prime} & =\left(\frac{z^{\prime} \alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}
\end{aligned}
$$

and we can also determine investment by capital accumulation process:

$$
I_{D}=K^{\prime}-(1-\delta) K=\left(\frac{z^{\prime} \alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}-(1-\delta) K
$$

Check: Investment Demand Assumption

$$
I_{D}=\left(\frac{z^{\prime} \alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}-(1-\delta) K
$$

Recall assumptions from Lecture 15:

- $I_{D}(r) \downarrow$ in $r(\checkmark)$
- $I_{D}(r)$ shifts in when $K \uparrow$: yellow v.s. blue
- $I_{D}(r)$ shifts out when $z^{\prime} \uparrow$: red v.s. blue

Constructing the Output Demand Curve

Aggregate all three components:

- investment (red) and government (yellow) are horizontal
- consumption (blue) increase in income with slope $\approx \frac{1}{1+\beta}$
- total output demand (green) gain the slope from consumption, and is the sum of all three

Constructing the Output Demand Curve (Cont.)

$$
r \uparrow \Rightarrow I_{D}(r) \downarrow \Rightarrow \text { total demand } \downarrow
$$

