Julia Syntax and Algorithm

Hui-Jun Chen

February 22, 2025

The Ohio State University

1/32

Outline

Basic Julia Usage

1/32

THE MOST important coding rules

Leggl le legg]

(“Read the manuals” in Italian)

2/32

Resources on Syntax

| 4 JU“a Ofﬁ(]al TUtorial: https://julialang.org/learning/tutorials/
> W|k|b00k on |I’1tr0ducing JU“a: https://en.wikibooks.org/wiki/Introducing_Julia
> QUantECOn W/ JU“a https://julia.quantecon.org/intro.html

| 4 JU“a in 100 Secondsf https://www.youtube.com/watch?v=1Ys_94znYye

3/32

https://docs.julialang.org/en/v1/manual/getting-started/
https://julialang.org/learning/tutorials/
https://en.wikibooks.org/wiki/Introducing_Julia
https://en.wikibooks.org/wiki/Introducing_Julia
https://julia.quantecon.org/intro.html
https://julia.quantecon.org/intro.html
https://www.youtube.com/watch?v=JYs_94znYy0
https://www.youtube.com/watch?v=JYs_94znYy0

The REPL

REPL stands for Read, Evaluate, Print, and Loops.
Julia’s REPL is the best | have ever seen, includes
» Unicode transformation: type \alpha and tab leadsto «

» Package management: type] to enter Pkg mode to add packages

v

Manual query: type ? to enter help mode & find function manual

Tab completion: type \al and tab gives you possible commands

v

1/ 1: up/down arrow key cycle through executed command history

\{

4/32

The Language: Good and Bad

Julia language is designed with scientific computing in mind, and thus

» Unicode variable: directly use « as variable, not alpha .
» Multiple dispatch: multiple “methods” in one function for input types
» Type system: use struct to build custom types (=~ but # OOP)

But also have some weird behavior that | am not used to:

» Weird scope: variables defined inside loops (while , for) are local.
» Speed needs discipline: well-written code v.s. sloppy-written code

» Memory usage: might directly crash the Julia session (-. LLVM?)

Best practice? Still Searching...

5/32

https://craftofcoding.wordpress.com/2021/02/12/what-i-really-dislike-about-julia-its-scope/

Outline

Syntax

5/32

Syntax: generating a grid

v

v

v

v

Usually the Macro coding starts with the grids of choice variables.
A grid is a finite sample of continuous choice variable.
Key to construct a grid is the collect and range function.

range syntax requires start pt, stop ptand length of this grid

collect then “collect” this range object into an array.
cnum = 100
lhum = 100

cgrid = collect(range(0.01, 10.0, length = cnum))
lgrid = collect(range(©.01, 1.0, length = lnum))

6/32

Syntax: Array manipulation

To get one element of a grid, we use [] syntax.

cval
Tval

cgrid[1] # get the first element of cgrid
lgrid[5] # get the fifth element of 1lgrid

To create an array, you can use manual or automatical way.

manually type all the elements

a=1[1.0, 2.0, 3.0, 4.0, 5.0]

automatically generate an "empty" array

type dim empty row column
utility = Array{Float6s4, 2}(undef, cnum, lnum)
utility = zeros(cnum, lnum) # zero array
utility = ones(cnum, lnum) # one array

7132

Syntax: for loop

To calculate the utility value at each (C,/) bundle, use for loop

utility = Array{Float6s4, 2}(undef, cnum, lnum)
for indl in 1:1:lnum
get the each value in leisure grid
lval = lgrid[indl]
for indc in 1:1:cnum
get the each value in consumption grid
cval = cgrid[indc]
log utility in both c and 1
utility[indc, indl] = log(cval) + log(lval)
end
end

4 Gov spending

8/32

Syntax: 3-D plotting

Install Plots and PyPlot bytyping] andtype add Plots PyPlot

Plot the utility array by

using Plots; pyplot();
surface(cgrid, lgrid, utility) # 3-D figure

9/32

Syntax: contour plotting

using Plots; pyplot();
contour(cgrid, lgrid, utility)

contour figure

10/32

Syntax: println print something out

To show some info inside the for loop, println is a convenient tool.

If you want to know what (C, /) bundle leads to U(C,/) = 0.0,

for indl in 21:2:lnum
for indc in 1:1:cnum
the abs of u is close enough to 0.0
if abs(utility[indc, indl]) < 1e-2
'$': string interpolation (IMO inefficient)
println("U ~ o at (C, 1) = ($indc, $indl)")
end
end
end

println vs. print: println add additional \n

11/32

Syntax: while loop

while loop mostly used when iteration only hault in some conditions.
In my experience it is mostly used if something needs convergence
The following code is NOT an efficient way to find minimum location.

(should use argmin for minimum and argmax for maximum)

dist = 1.0; iter = 0;
while (dist > 1e-2)
iter += 1 # same as "iter = iter + 1"
indc = rand(a:2:cnum); indl = rand(1:1:lnum)
dist = utility[indc, indl] - minimum(utility)
if (dist < 1e-2)
println("Find minimum at ($indc, $indl)")
println("Iterates $iter times")
end
end

12/32

Syntax: Rounding

Mostly for exam / standardization purpose.

round(pi)
round(pi,
round(pi,
round(pi,
round(pi,
round(pi,

digits
digits
digits
digits
digits

1)
2)
3)
4)
5)

H o HF F O X

w w w www

VA
.142
.1416
.14159

13/32

Outline

Laffer curve

13/32

Application: Laffer curve

There are going to be two applications for Julia syntax learned:

Laffer curve in distorting taxes, and

Government spending in CRRA utility function.

Recall that Y = zN9 implies labor supply N*(t) equals to

and the total tax revenue is given by
R(t) = wtN*(t). (2)

In equilibrium w =z =1, so 7 = zN? — wN9 = 0, so this question is trivial...

14/32

Laffer curve in Cobb-Douglas Production Function

Assume Y = zN?, where a < 1, so firm’s problem leads to

w(N) = MPN = zaN*~*,
7(N)=Y — wN = z(1 — a)N?,

and recall MRS, ¢ = w(1 — t) and binding BC C = w(1l — t)N + 7, SO

—— % _ w — w(l—t)
_ w(N)(1(1—r>x)+ ™) _ - 1)

expands, we get a monster:

zaN>=1(1 — t)N + z(1 — a)N?
1-N

= zaN°"1(1 - t)

15/32

Laffer curve in Cobb-Douglas Production Function (cont.)

But not too bad, because you realize:
zaN*=1(1 — t)N + z(1 — a)N?

Common N : " = zaN*"}(1 —t) (8)
e N Cl i)j,\j(l — AN et — g (9)
Erase zne-1 . ZN-[a(t 1__t)N+ L=a a0 - pyne (10)
Divide [] : NMlI?;l_ﬂzau—ﬂ (11)

1 ﬁ/N T a1 i(i);? —, = Al (12)
N=Al—N)=A—AN (13)

A(t)

L+ AN =A= Nt = s

16/32

Laffer curve in Julia

a = 0.33; tnum = 1000

tgrid = collect(range(e.01, ©.99, length = tnum))
Gvec = Array{Float6s4, 1}(undef, tnum)

for indt = 1:12:tnum

t = tgrid[indt]
A=(ax(1-t))/ (a*x(2-t) + 1 - a)
N=A/(1+ A)

w = a*N"(a-1)

Gvec[indt] = w * t = N
end
Gmax = maximum(Gvec); tmax = tgrid[argmax(Gvec)];
println("G* = $Gmax; t* = $tmax")

17/32

Laffer curve in Julia (cont.)

using Plots; pyplot()
plot(tgrid, Gvec, label = "G")

18/32

Outline

Gov Spending

18/32

Grid search

Just calculate value on the grid points! Like slide

Recall the formula with gov spending:

Zl_llfa_Glfb llfd
mlax (z()1—b) +1—d' (15)

We want to solve /(z, G), but how to choose the Ggrid ?

From the FOC we know

olH

1= -

G=F()=z(1-Nt">— TEEEEI R (16)

Our first step starts with generating a TFP grid:

znum = 100
zgrid = collect(range(©.8, 1.2, length = znum))

19/32

Grid search: preperation

We want to find the upper/lower bound of Ggrid :

a=1/2; b=2;d=3/2;
GovFOC(z, 1) = z*x(1-1)"(1-a) - # line continuation!
((1°(-d)) / ((2-a)*zx(2-1)"(-a)))"(-1/b)
upper & lower bound of Ggrid
Gbound = Array{Float6s4, 2}(undef, znum, 2)
for indz = 1:1:znum
zval = zgrid[indz]
Gbound[indz, 1] = GovFOC(zval, ©.99) # lower bound

Gbound[indz, 2] = GovFOC(zval, ©.01) # upper bound
end

20/32

Grid search: preperation (cont.)

lower bound should higher than .01

Glow = max(e.0, minimum(Gbound))

Ghigh = maximum(Gbound)

build Ggrid

Gnum = 100

Ggrid = collect(range(Glow, Ghigh, length = Gnum))
build lgrid

lnum = 100

lgrid = collect(range(©.01, 1.0, length = lnum))

and then find the optimal leisure using the value on this grid:

21/32

Grid search: structure

a=1/2; b=2;d=3/2;
define implicit utility function
utility(l, z, G) = ((z+(2-1)"(1-a) - G)*(1-b)) /
(1-b) +
(1"(2-d)) / (2-d)
Array for storage
for temporary storage
uvec = Array{Float64, 1}(undef, 1lnum)
for optimal utility value
ustar = Array{Float6s4, 2}(undef, znum, Gnum)
for optimal leisure given z, G
lstar = Array{Float64, 2}(undef, znum, Gnum)

22/32

Grid search: structure (cont.)

for indG = 1:1:Gnum
Gval = Ggrid[indG]
for indz = 1:1:znum
zval = zgrid[indz]
for indl = 1:1:1lnum
lval = lgrid[indl]
cval = zval=(1-lval)”(1-a) - Gval
uvec[indl] = (cval < 0.0 ? -Inf :
utility(lval, zval, Gval))
end
ustar[indz, indG] = maximum(uvec)
end
end

23/32

Grid search: analysis

Notice that in previous slide, | check whether cval < 6.0

and also we find the highest utility and the corresponding (z, G) value by

umax
zloc
Gloc
zZmax
Gmax

maximum(ustar)
argmax(ustar)[1]
argmax(ustar)[2]
zgrid[zloc]
Ggrid[Gloc]

But if you plot you will see that the plot is slightly “off™

using Plots; pyplot()
surface(zgrid, Ggrid, ustar)

- large negative point that drag down the scale of every point.

24/32

grid search: misleading figure

25/32

Grid search: revising (erase uval < -30.0)

for indG = 1:1:Gnum
Gval = Ggrid[indG]
for indz = 1:1:znum
zval = zgrid[indz]
for indl = 12:2:1num
lval = lgrid[indl]
cval = zvalx(a-1lval)”(1-a) - Gval
uval = utility(lval, zval, Gval)
uvec[indl] = ((cval < 0.0 || uval < -30.0)
? -Inf : uval)

end
ustar[indz, indG] = maximum(uvec)
end
end

26/32

Grid search: better figure

27/32

Grid search: Can we do better?

All of the -Inf stuff we are assigning manually is because C < 0.

Recallthat C =Y — G,and thusforC >0, Y -G>0=Y > G.

ymat = Array{Float6s4, 2}(undef, znum, lnum)
for indl = 1:1:1num
lval = lgrid[indl]
for indz = 1:1:znum
zval = zgrid[indz]
ymat[indz, indl] = zval = (2-lval)”(1-a)
end
end
ymin = minimum(ymat)

You will get min(y) = 0.081, which means that if you choose the Ghigh = 0.08,C > 0,vz, G
assigned. 28/32

Grid search: do better

lower bound should higher than .01

Glow = 0.0

Ghigh = 0.08

build Ggrid

Gnum = 100

Ggrid = collect(range(Glow, Ghigh, length = Gnum))
build lgrid

lhnum = 100

lgrid = collect(range(0.01, ©.99, length = lnum))

and then find the optimal leisure using the value on this grid:

29/32

Grid search: do better (cont.)

for indG = 1:1:Gnum
Gval = Ggrid[indG]
for indz = 1:1:znum
zval = zgrid[indz]
for indl 1:1:1lnum
lval = lgrid[indl]
cval = zvalx(a-1lval)”(1-a) - Gval
uvec[indl] = utility(lval, zval, Gval)

end
ustar[indz, indG] = maximum(uvec)
end
end

30/32

Grid search: better figure

31/32

Grid search method: additional details

Calculate on the grid point = result are correct but speed is slow.
Notice that when you choose the grid points, better to avoid some value:

Example
When | create cgrid and 1lgrid, | avoid the start point of 0.0, but 0.01, since log(0.0) = oc.

In general, if theoretical range, say leisure, is [0, 1], then it is safe to build a grid from [0.01, 0.99].

32/32

	Basic Julia Usage
	Syntax
	Laffer curve
	Gov Spending

