Lecture 2: Measurement I Economic Aggregates

Hui-Jun Chen

National Tsing Hua University

September 3, 2025

Outline

1 Three Approach

2 Inflation

3 Employment

3 Approach to Measure GDP

Source: National Income and Product Accounts (NIPA)

- Product (value-added) approach: sum of value added to all goods and services across all
 productive units in the economy
- 2. **Expenditure approach**: sum of spending on all final goods and services produced in the economy
- 3. **Income approach**: sum of all **income received** by economic agents contributing to production

If no measurement error, all should give the same answer!

3 Approach to Measure GDP: Example

Variable	Coconut Producer	Restaurant	Government
Revenue*	20	30	5.5
sales for consumption	8	30	_
sales as intermediate	12	0	_
Costs	7	19	5.5
wages	5	4	5.5
interest on loan	0.5	_	_
cost of intermediates	_	12	_
taxes*	1.5	3	_
After-Tax Profits**	13	11	_

- > government gets revenue from taxes on producers and consumers, spends wages to provide defense services
- > profits are revenues minus costs

Question: how to calculate GDP?

The Product Approach

Question: What is the value added by each agent?

- **Coconut Producer**: Final good \$20*M*, no intermediate input
- **Restaurant**: Final goods \$30*M*, with intermediate input \$12*M* from Coconut Producer
 - **>>** value added: 30 12 = 18M

Solution Government: Defence services, valued at cost \$5.5M

> GDP: 20 + 18 + 5.5 = 43.5M

The Expenditure Approach

Question: What is the total spending?

- Formula: Y = C + I + G + NX
- **Consumption** (*C*): "sale for consumption" row
 - >> To Coconut Producer: 8M
 - >> To Restaurant: 30M
- ➤ No investment (I) and net export (NX).
- **>** Government (G): defense service 5.5M
- **>** GDP (Y): 38 + 5.5 = 43.5M

The Income Approach

Question: how much does agent earn?

- ➤ Workers: wages 5M from Coconut Producer, 4M from Restaurant and 5.5M from Government
- > Firms:
 - \Rightarrow After-tax Profits: 13M to Coconut Producer and 11M to Restaurant
 - \Rightarrow Interest on loan: 0.5M for Coconut Producer
- ▶ Government: Taxes 1.5*M* from Coconut Producer and 3*M* from Restaurant
 - **>>** Expenditure is $5.5M \Rightarrow$ budget deficit
- **>** GDP: 5 + 4 + 5.5 + 13 + 11 + 0.5 + 1.5 + 3 = 43.5M

Income-Expenditure Identity: Income earned goes to expenditure

Outline

1 Three Approach

2 Inflation

3 Employment

Prices in GDP measurement

- The revenue row is calculated by 10M coconuts \times \$2 each
 - >> What if coconut price increases to \$3 next year?

Solution: common price index across different time

- > Two ways to build common price index:
 - 1. GDP deflator: common GDP standard
 - 2. Consumer Price Index (CPI): common consumption basket (Q)

Prices in GDP measurement (Cont.)

- > GDP deflator: ratio between nominal and real GDP
 - 1. Calculate real GDP relative to base year by base year price level
 - E.g. $RealGDP_{2020} = Cost of Q_{2020}$ at P_{2000} , use 2000 as base year
 - While NominalGDP₂₀₂₀ = Cost of Q_{2020} at P_{2020}
 - Problem: choose which year? ⇒ "chain-weighting" (rolling base)
 - 2. Calculate ratio: $\frac{NominalGDP_{2020}}{RealGDP_{2020}} \times 100$
- > CPI: normalize consumption basket of base year as 100, relative to other year
 - **>>** E.g. $CPI_{2020} = \frac{\text{Cost of } Q_{2000} \text{ at } P_{2020}}{\text{Cost of } Q_{2000} \text{ at } P_{2000}} \times 100$, use 2000 as base year
 - >>> Problem:
 - 1. ΔP outside of consumption basket & not accounted
 - 2. new goods & services introduced, old goods & services obsolete

Example: Nominal v.s. Real GDP

> Nominal GDP: value of goods & services at current price

> Real GDP: value of goods & services at base year price

Year	Apples		Oranges		GDP Measure		
	Quantity	Price	Quantity	Price	Nominal	Real (base year $= 1$)	Real (base year = 2)
1	50	\$1.00	100	\$0.80	\$130	\$130	\$222.5
2	80	\$1.25	120	\$1.60	\$292	\$176	\$292

> Choice of base year affects the GDP measure!

> Alternative: chain-weighting

Data: Nominal v.s. Real GDP

- inflation growth + economics growth = nominal grows faster than real
- Question: What year is the base year on this graph?
- ➤ Ans: 2009, when Nominal = Real

Figure: Figure 2.1 Nominal GDP and Chain-Weighted Real GDP

Outline

1 Three Approach

2 Inflation

3 Employment

Population Composition

- **>** participation rate = $\frac{LF}{N}$
- unemployment rate $=\frac{U}{LF}$
- employment rate = $\frac{E}{N}$