Lecture 4 Representative Consumer Preference and Constraints

Hui-Jun Chen

National Tsing Hua University

September 10, 2025

Overview: Lecture 4 - 7

Provide micro-foundation for the macro implication (Lucas critique)

- > Representative Consumer:
 - >> Lecture 4: preference, constraints
 - >> Lecture 5: optimization, application
 - >> Lecture 6: Numerical Examples
- > Representative Firm:
 - >> Lecture 7: production, optimization, application

Outline

1 Preference

2 Constraints

Utility Function

We use utility function U(C, l) to represent the preference/happiness

- > C: consumption (assume single/composite goods)
- > *l*: leisure (time spent not working)

Utility function defines the ranking of (C, l) bundles

- ▶ If $U(C_1, l_1) > U(C_2, l_2)$, then (C_1, l_1) is strictly preferred to (C_2, l_2)
 - $ightharpoonup (C_1, l_1)$ bundle generate more happiness than (C_2, l_2) bundle
- ▶ If $U(C_1, l_1) = U(C_2, l_2)$, then indifferent between (C_1, l_1) and (C_2, l_2)
 - $ightharpoonup (C_1, l_1)$ bundle generate same happiness as (C_2, l_2) bundle
- ➤ Note: level of utility is meaningless, only order matters!

Properties of Utility Function

- 1. Monotonicity: more is always better!
 - **>>** If $C_1 > C_2$ and $l_1 > l_2$, then $U(C_1, l_1) > U(C_2, l_2)$
- 2. **Convexity**: prefer diversified consumption bundles
 - >> e.g. prefer food + leisure rather than overeating / oversleeping
- 3. Normality: consumption and leisure are normal goods
 - \Rightarrow income $\uparrow \Rightarrow$ consumption \uparrow
 - >> leisure is complicated: relates to income
 - the poor: less leisure means more labor income
 - the rich: more income means more leisure

Rep. of Utility Function: Indifference Curve

- ➤ Def: (C, l) bundles that yield the same utility level
- **>** Monotonicity ⇒ downward sloping
- Convexity ⇒ diversity shown in comparison between point B and D

Figure: Figure 4.1 Indifference Curves

Rep. of Utility Function: Indifference Curve (Cont.)

- ➤ Normality: Marginal Rate of Substitution
 - >> Marginal: for arbitrary small change in x-axis (leisure in this case)
 - >> rate of substitution: the amount on y-axis has to be sacrificed (consumption in this case)

$$MRS_{l,C} = \frac{D_l U(C,l)}{D_C U(C,l)},$$
 (1)

where $D_x U(\cdot)$ is derivative of U w.r.t. x

Figure: Figure 4.2 MRS

Computing MRS

- ▶ little change in leisure $dl > 0 \Rightarrow$ change in utility $D_lU(C, l)dl$
- with the cost of income loss \Rightarrow consumption has to drop by dC < 0 amount \Rightarrow change in utility $D_C U(C, l) dC$
- > Stay on the IC ⇒ utility remain the same:

$$D_{C}U(C,l)dC + D_{l}U(C,l)dl = 0$$

$$\frac{dC}{dl} = -\frac{D_{l}U(C,l)}{D_{C}U(C,l)} = -MRS_{l,C}$$

Algebraic Example

Suppose $U(C,l)=rac{C^{1-\sigma}}{1-\sigma}+\psi\ln l$, where σ and ψ are parameters. Then,

►
$$D_C U(C, l) = (1 - \sigma) \frac{C^{1 - \sigma - 1}}{1 - \sigma} = C^{-\sigma}$$

• Remember
$$\frac{d \ln l}{dl} = \frac{1}{l}$$
, $D_l U(C, l) = \frac{\psi}{l}$

•
$$MRS_{l,C} = \frac{D_l U(C,l)}{D_C U(C,l)} = \frac{\psi}{lC^{-\sigma}}$$

Outline

1 Preference

2 Constraints

Budget Constraints

Time: consumer has h hours per day, and allocate between leisure l and labor supply N^s

$$l+N^s=h (2)$$

- **> Budget**: consumer cannot spend more than the income he/she has
 - **>>** labor income: wage rate w times labor supply N^s , wN^s
 - ightharpoonup dividends income: consumer buys share of the firm, gain dividend π
 - \Rightarrow tax: consumer is subject to lump-sum taxes T

$$C \le wN^s + \pi - T \tag{3}$$

- > Consumption is **numeraire**: price **normalized** to 1.
 - >> Imagine consumption goods as unit of account, ppl directly trade with consumption goods

Visualization of Budget Set

Figure: Figure 4.3 Representative Consumer's Budget Constraint when $T>\pi$ ("poor")

Figure: Figure 4.4 Representative Consumer's Budget Constraint when $T < \pi$ ("rich")

Outline

3 Calculus

Note on Calculus

- **>** Function: y = f(x), how y is determined by x
 - \Rightarrow E.g., y = 3x + 2: if x = 3, then 3 times 3 and plus 2 will get y = 11
- \triangleright Differentiation: how changes in x results in change in y

>> E.g.,
$$y = 3x + 2$$
,

Table: Table for how the value of x affects the value of y

Notice
$$\Delta x = 1 \implies \Delta y = 3 \implies \frac{\Delta y}{\Delta x} = 3$$
, change to differentiation notation, $\frac{dy}{dx} = 3$

Tips:
$$y = 3x^2 + 9x + 2$$
, look at terms with x , $dy = 3 \times 2x (dx) + 9 (dx) \implies \frac{dy}{dx} = 6x + 9$