Lecture 8 Competitive Equilibrium One-Period Model

Hui-Jun Chen

National Tsing Hua University

September 24, 2025

Overview

After constructing both consumers' and firms' problem, we start to bring them together in one-period model:

- ➤ Lecture 8: competitive equilibrium (CE)
 - >> each agent solve their problems individually
 - aggregate decision determines "prices" (wage, rent, etc.)
- ➤ Lecture 9: social planer's problem (SPP)
 - >> imaginary and benevolent social planner determines the allocation
 - >> should be the most efficient outcome
- Lecture 10: CE and SPP examples

Outline

1 Structure

2 Competitive Equilibrium

Review: Structure of Macro Model: 4 elements

- 1. agent: who is involved?
 - >> e.g. consumers, firms, government
- 2. preferences: how and what is consumed/valued/invested?
 - >> consumers: monotone, convex, consumption + leisure normal
 - >> firms: profit maximization
 - >> government: passive (for now)
- 3. resources: availability and distribution
 - >> consumer: h unit of time endowment
 - **>>** firm: production technology $zF(K, N^d)$
- 4. technology: objective limitation at given period of time
 - >>> CRS production function, government tax decision

Government and Budget Balance

➤ Government provide *G* unit of gov. spending by imposing lump-sum tax *T* on consumer.

- > Assumptions:
 - 1. Government spending requires resources but with no benefit \Rightarrow not public goods
 - 2. No transfers between consumers \Rightarrow no heritage, no social security, etc
 - 3. Government budget balance: G = T, must run balanced budget
 - special case: G = 0 means no government!

Using a Macro Model

"Making use of the model is a process of running experiments to determine how changes in the exogenous variables change the endogenous variables." – Williamson, p.144

Exogenous variables: determined outside the model

- 1. G: gov. spending
- 2. K: firms' capital stock
- 3. z, h: TFP, consumer's time endowment

Endogenous variables: determined inside the model

- > *C*, *Y*: consumption, output
- $ightharpoonup N^s, N^d$: labor supply & demand
- > T, w, π : tax level, wage rate, dividends

Outline

1 Structure

2 Competitive Equilibrium

Concept: Competitive Equilibrium

- Agents in the economy behave for a given set of exogenous variables and parameters
- > Both consumer and firm took the wage rate as given.
- > But this wage is endogenous! How is this wage determined?
- > Solution: in competitive equilibrium,
 - >> prices are exogenous to agent ("taken as given"), but
 - >> endogenous to the model (NOT parameter and need to be solved)
- **>** Market clear: wage rate is determined by $N^s = N^d$ ("endogenous")
- > other examples: dividend income, taxes

Analysis on Competitive Equilibrium

- > How many markets exist in this economy?
 - >> There are 2 goods: consumption goods and leisure
 - **≫** While there is only 1 market: leisure is traded for consumption with wage rate w

- **>** Walras' Law: with N goods, can only have N-1 prices
 - \Rightarrow All prices are relative prices: normalize price of consumption as $1 \Rightarrow$ relative price of leisure is w
 - >> Trade consumption goods for consumption goods?

Competitive Equilibrium in Words

A competitive equilibrium given exogenous levels of government spending, TFP, and capital is a set of endogenous quantities of output, consumption, labor demand, labor supply, dividends, and taxes and an endogenous wage rate such that the following properties are satisfied:

- the representative consumer chooses consumption and labor supply to make herself as well
 off as possible subject to her budget constraint, taking as given the wage, taxes, and
 dividend income
- 2. the representative firm chooses labor demand to maximize profits taking capital, TFP, and the wage as given.
- 3. output (profits) are total (net) revenues, determined "residually"
- 4. the government imposes the taxes required by its budget constraint
- 5. the labor market clears, i.e., the quantity of labor supplied by the consumer is equal to the quantity of labor demanded by the firm.

Competitive Equilibrium in Math

A competitive equilibrium given $\{G, z, K\}$ is a set of allocations $\{Y^*, C^*, l^*, N^{s*}, N^{d*}, \pi^*, T^*\}$ and prices $\{w^*\}$ such that

1. Taken prices w and π , T as given, representative consumer solves

$$\max_{C,l \in [0,h]} U(C,l) \quad \text{subject to} \quad C \le w(h-l) + \pi - T \tag{1}$$

2. Taken w as given, the representative firm solves

$$\max_{N^d > 0} zF(K, N^d) - wN^d \tag{2}$$

- 3. Government set taxes to balance budget: $T^* = G$
- 4. Labor market clears: w^* such that $N^{s*} = N^{d*}$

Does it All Add Up? Revisiting the Income-Expenditure Identity

- **>** Expenditure approach: Y = C + I + G + NX
 - \Rightarrow one period $\Rightarrow I = 0$; closed economy $\Rightarrow NX = 0 \Rightarrow Y = C + G$
- > Income approach:
 - **>>** consumer budget constraint: $C = wN^s + \pi T$
 - **>>** government budget balance: $G = T \Rightarrow C = wN^s + \pi G$
 - ightharpoonup profit: $\pi = zF(K, N^d) wN^d = Y wN^d \Rightarrow C = wN^s + Y wN^d G$
 - >> labor market clear: $N^s = N^d \Rightarrow C = Y G$
- Income-Expenditure Identity holds!

Example

Assume

- 1. no government: G = T = 0
- 2. utility function: $U(C, l) = \ln C + \ln l$
- 3. production function: $F(K, N) = K^{\alpha} N^{1-\alpha}$, where $\alpha = \frac{1}{2}$
- 4. z = K = 1; h = 1

Consumer: $\max_{C,l} \ln C + \ln l$ subject to $C \leq w(h-l) + \pi$

$$FOC \quad \frac{C}{l} = w \tag{3}$$

Binding budget constraint
$$C = w(1 - l) + \pi$$
 (4)

Time constraint
$$N^s = 1 - l$$
 (5)

Example (Cont.)

Firm: $\max_{N^d} (N^d)^{\frac{1}{2}} - wN^d$

FOC
$$\frac{1}{2}(N^d)^{-\frac{1}{2}} = w$$
 (6)

Output definition
$$Y = (N^d)^{\frac{1}{2}}$$
 (7)

Profit definition
$$\pi = Y - wN^d$$
 (8)

Market clear:

$$N^{s} = N^{d} \tag{9}$$

7 equations ((3)-(9)), 7 unknowns $(C, l, N^s, N^d, Y, \pi, w)$, can solve entirely!