Lecture 15 The Real Business Cycle Model Part 2: Firm

Hui-Jun Chen

National Tsing Hua University

October 29, 2025

Overview

- > Recall that in Lecture 13, there is no production in dynamic model.
- ➤ The following 5 lectures is for **Real Business Cycle** (RBC) model:
 - >> Lecture 14: consumer
 - >> Lecture 15: firm
 - >> Lecture 16: competitive equilibrium
 - >> Lecture 17: formal example
 - >> Lecture 18: application to bring RBC to data

Outline

1 Demand for *C*

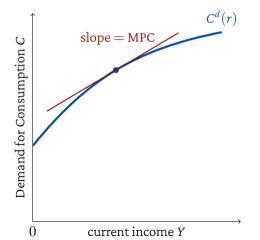
2 Representative Firm

3 More Assumptions

Demand for Consumption Goods

Ultimately, 3 markets will have to clear in the current period (date 0):

- 1. labor (like static model)
- 2. credit (like dynamic model)
- 3. consumption goods (implied in each case by Walras' Law)

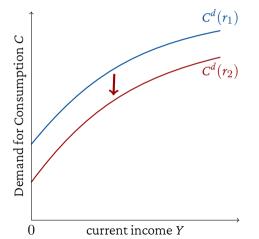

Recall our insights from last classes. Primary determinants of consumption:

- > over lifetime: permanent income / lifetime wealth
- > across periods: interest rate, current vs future income

Based on this, we'll construct a demand curve for current consumption goods that depends on lifetime wealth and the interest rate

Current Goods Demand and Current Income

Figure: Figure 11.4 Consumer's Current Demand for Consumption Goods Increases with Income

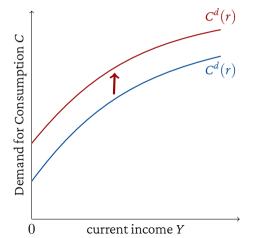


Assumption C1: demands for goods ↑ in income

- > Recall pure income effect
- Slope of tangent line is marginal propensity to consume (MPC)
 - **>>** what fraction of $Y \uparrow$ goes to C?
 - $\rightarrow MPC = dC_D/dY$
- ▶ normal goods: both *C* and $C' \uparrow$, so saving $S \uparrow$
 - **>>** usually MPC < 1, i.e., not all $Y \uparrow goes to C$.

Current Goods Demand and Real Interest Rate

Figure: Figure 11.5 Real Interest Rate ↑ Shifts the Demand for Consumption Goods Down



Assumption C2: demands for goods ↓ in real interest rate

- > Recall both income and substitution effect (from dynamic model)
- > Income effect: ambiguous (for borrowers and lenders)
- Substitution effect: always negative (for borrowers and lenders)
- > C2 assumes substitution effect dominates

Current Goods Demand and Lifetime Wealth

Figure: Figure 11.6 An Increase in Lifetime Wealth Shifts the Demand for Consumption Goods Up

Assumption C3: demands for goods ↑ in lifetime wealth

similar to pure income effect

Note: consumer's demand is only one part of the GDP:

$$Y = C + I + G.$$

We'll discuss I and G in next lecture

Outline

1 Demand for C

2 Representative Firm

3 More Assumptions

Overview: Firm Decision

- **>** production: needs both capital K and labor N, Y = zF(K, N)
- **endowment**: firm is endowed with initial capital *K*
- > firm decision:
 - **>>** both dates: labor (N), profit (π) , and output (Y) by production

$$Y = zF(K, N)$$
 and $Y' = z'F(K', N')$

≫ date 0 (today): **investment** (*I*) determines future capital K' given initial capital K and depreciation rate $\delta \in [0, 1]$,

$$K' = (1 - \delta)K + I$$

- > Assumptions:
 - 1. investment made in consumption goods
 - 2. remaining capital $(1 \delta)K'$ liquidates tomorrow (: model ends)

Firm's Optimization Problem

Firm maximizes the discounted present value of profits:

$$\max_{N_D,N_D',K',I} V = \pi + rac{\pi'}{1+r}$$
 subject to $K' = (1-\delta)K + I$,

where
$$\pi = Y - wN - I$$
, and $\pi' = Y' - w'N' + \underbrace{(1 - \delta)K'}_{\text{liquidate}}$.

Notice: since we assume that consumer owns the firm, so firm calculates present value using real interest rate r, i.e., how consumer discounts.

By substituting π , π' , Y, Y' and I into above problem, we get

$$\max_{N_{D},N'_{D},K'} zF(K,N_{D}) - wN_{D} - [K' - (1-\delta)K] + \frac{z'F(K',N'_{D}) - w'N'_{D} + (1-\delta)K'}{1+r}$$
(1)

Firm's Optimality Conditions

$$\begin{aligned} [N_D] : & zD_N F(K, N_D) = w \\ [N'_D] : & z'D_N F(K', N'_D) = w' \\ [K'] : & -1 + \frac{z'D_{K'} F(K', N'_D) + (1 - \delta)}{1 + r} = 0 \end{aligned}$$

- > FOCs on current and future labor are the same as static model!
 - >> Why? Since labor choice is static: choose labor for current production
- > FOC on future capital equalize the marginal cost and benefit of investment
 - >> cost: loss in current consumption (incurred today)
 - **>>** benefit: \uparrow in marginal production + liquidating K' (incurred tomorrow)

Optimal Investment Schedule: Derivation

Solve for [K'], we get

$$z'D_{K'}F(K',N_D') + 1 - \delta = 1 + r \Rightarrow r = MPK' - \delta$$

For consumer, there are 2 assets to undertake intertemporal substitution:

- 1. saving in credit market (supply in credit mkt; demand in bond mkt)
- 2. capital held by the firm for production

Investing in capital means giving up (net) return r for (net) return $MPK' - \delta$: optimal investment rule means both must offset, WHY?

- ▶ if $r > MPK' \delta$: consumer will save more for bond \Rightarrow supply in credit market \uparrow , $r \downarrow$
- ▶ if $r < MPK' \delta$: consumer asks firm to invest more capital $\Rightarrow MPK' \downarrow$

To sum up, $r = \mathit{MPK}' - \delta$ in equilibrium: "optimal" investment rule!

Outline

1 Demand for *C*

2 Representative Firm

3 More Assumptions

Labor Demand is decreasing in w and increasing in z, K

Figure: Figure 11.7 The Demand Curve for N Is the Firm's MPL Schedule

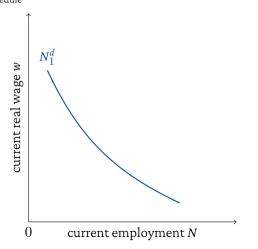
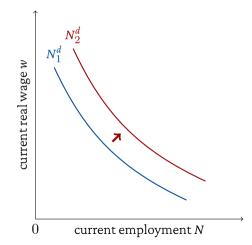
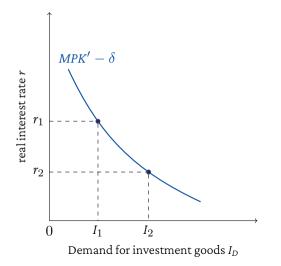
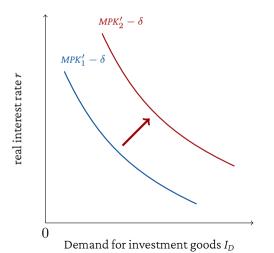




Figure: Figure 11.8 The Current Demand Curve for Labor Shifts Due to Changes in z and K

Optimal Investment Schedule: Graphical Representation

Figure 11.9 Optimal Investment Schedule for the Representative Firm


Put capital accumulation process into MPK and get

$$z'D_{K'}F((1-\delta)K+I_D,N_D')=r+\delta$$

- **>** as $r \uparrow$, need less K' for optimal investment schedule to hold.
 - >> why? diminishing MPK
- > K' ↑ in I, so r ↑ also means less investment \Rightarrow downward slope
- i.e., higher opportunity cost of investing

Optimal Investment Schedule: Effect of K and z'

Figure 11.10 The Optimal Investment Schedule Shifts to the Right if $K\downarrow$ or expecting $z'\uparrow$

The optimal investment schedule shifts to the right, i.e., demand for investment rises if

> current capital *K* decreases:

$$\frac{dI_D}{dK} < 0$$

- >> Intuition: need to invest more for less endowment
- > (expected) future TFP increases:

$$\frac{dI_D}{dz'} > 0$$

>> Intuition: investment is more productive