Unit 7:
 The Firm, Demand Elasticity and Market Competition

Hui-Jun Chen

The Ohio State University
February 8, 2023

Introduction

Introduction

How do the firm and consumers interacts?

- We have been neglecting revenue for the past units. What's its deal?
- To answer this question, we need to see how consumers look like from firm's perspective
- Firm doesn't see consumer as individuals; what they see is demand
- How sensitive the demand is to the prices? (price elasticity)
- Can I produce enough to satisfy all demand? (returns to scale)
- Can I alter the demand / set prices? (market power)
- How I benefit from production and trade? (producer/consumer surplus)

Elasticity \& Price Elasticity of Demand

Elasticity in general

Definition (The x-elasticity of y)
The x-elasticity of y measures the fractional response of y to a fraction change in x

- Elasticity is the measure of the sensitivity of one variable to another.
- A highly elastic variable will respond more dramatically to changes in the variable it is dependent on
- The formula for elasticity is

$$
\begin{array}{r}
\frac{\text { growth rate of } y}{\text { growth rate of } x} \text { or } \frac{\left(y_{2}-y_{1}\right) / y_{1}}{\left(x_{2}-x_{1}\right) / x_{1}} \\
\frac{\partial y / y}{\partial x / x}
\end{array} \text { if discrete, }
$$

Price Elasticity of Demand

Following the definition of elasticity, the specification on how sensitive quantity demanded (y) is to the price (x) is $\epsilon=\frac{\left(Q_{2}-Q_{1}\right) / Q_{1}}{\left(P_{2}-P_{1}\right) / P_{1}}$

Assume change in price is 1 ,

- $\left|\epsilon_{A}\right|=\left|\frac{(20-20.0125) / 20}{(6400-6399) / 6400}\right|=4$
- $6399=-80 \times 20.0125+8000$
- $\left|\epsilon_{B}\right|=\left|\frac{(50-50.0125) / 20}{(4000-3999) / 4000}\right|=1$
- $3999=-80 \times 50.0125+8000$
- $\left|\epsilon_{C}\right|=\left|\frac{(70-70.0125) / 20}{(2400-2399) / 6400}\right|=0.43$
- $2399=-80 \times 70.0125+8000$

Elasticity and Slope: History Story

Is price determining quantity demanded, or the other way around?

- Mathematically speaking, above question is asking $Q(P)$ or $P(Q)$
- Graphically speaking, $Q P$ plane is saying $P(Q)$, i.e., quantity demanded determines prices ... match experience?
- What is the "slope" in the axis-swapped figure? Roughly
 elasticity?

Elasticity and Slope: History Story

Is price determining quantity demanded, or the other way around?

- Slope are $-\frac{1}{80}$, the inverse of the slope before, and constant over A, B, and C.
- Turns out the original formulation is this figure, i.e., price determines the quantity demanded, and we can measure the absolute change of demand using slope.

Elasticity and Slope: History Story

Is price determining quantity demanded, or the other way around?

- However, some Economists wants to compare growth in quantity demanded when prices are in a certain region over a long time series, which motivates them to swap the axis.

■ But they still want to see how quantity changes with the price!

Elasticity and Slope: History Story

Is price determining quantity demanded, or the other way around?

- Eventually, as time goes by, we
separate the definition as:
- Slope measures the absolute/average changes
- Elasticity measure the relative/percentage/marginal changes
- Thus, a straight line has constant slope but different elasticity

Constant Elasticity of Demand

Since a straight line doesn't provide constant elasticity, what's the shape of demand function has constant elasticity?

- Recall $\epsilon=\frac{P}{Q(P)} \frac{\partial Q(P)}{\partial P}$, and $Q(P)$ is a function of P.
- $Q(P)$ needs to have some power so that after differentiation, all the P 's cancels out and left only constant.
- If $Q(P)=P^{-0.8}$, then
$\epsilon=\frac{P}{P^{-0.8}} \frac{\partial\left(P^{-0.8}\right)}{\partial P}=$ $\frac{P}{P^{-0.8}} \times(-0.8) P^{-1.8}=-0.8$

Constant Elasticity of Demand

Production: Key Concept

Economies of Scale / Return to Scale

- Return to scale: how output will change when inputs increase

■ Constant return to scale (CRS): $x z F\left(K, N^{d}\right)=z F\left(x K, x N^{d}\right)$

- output increase proportionally with inputs
- small firms are as efficient as large firms

■ Increasing return to scale (IRS): $x z F\left(K, N^{d}\right)>z F\left(x K, x N^{d}\right)$

- output increase more than proportionally with inputs
- small firms are less efficient than large firms
- Decreasing return to scale (DRS): $x z F\left(K, N^{d}\right)<z F\left(x K, x N^{d}\right)$
- output increase less than proportionally with inputs
- small firms are more efficient than large firms

Economies of Scale: Example

■ IRS \rightarrow Economies of scale, and DRS \rightarrow Diseconomies of scale

- Economies of scale includes:
(1) Cost advantages - Large firms can purchase inputs on more favourable terms, because they have greater bargaining power when negotiating with suppliers.
(2) Demand advantages - Network effects (value of output rises with number of users e.g. software application)
- However, large firms can also suffer from diseconomies of scale
- e.g. additional layers of bureaucracy due to too many employees.

Cost Function

Cost functions show how production costs vary with quantity produced.

- $A C(Q) \equiv \frac{C(Q)}{Q}$: average cost
- $M C(Q) \equiv \frac{\partial C(Q)}{\partial Q}$: marginal cost

■ F : fixed cost

- c_{0} : lowest point on $A C(Q)$
- Why $A C(Q)$ and $M C(Q)$ intersect at the lowest point?

Cost Function

Cost Function

Cost functions show how production costs vary with quantity produced.

- c_{0} : lowest point on $A C(Q)$
- $M C(Q)$ always increase as Q increases
- If $A C(Q)>(<) M C(Q)$: the relative increment in cost function, i.e., marginal cost, is smaller (larger) than the increment of 1 unit Q (denominator), and thus $A C(Q) \downarrow(\uparrow)$

Profit Maximization

If Price is a Function of Quantity

- Assume the firm is monopoly: price being affected by quantity decision
- Profit max:

$$
\pi=R(Q)-C(Q)
$$

- $\frac{\partial R(Q)}{\partial Q} \Rightarrow M R(Q)$
- $\frac{\partial C(Q)}{\partial Q} \Rightarrow M C(Q)$

Profit Maximization: Marginal Revenue $=$ Marginal Cost

If Price is a Function of Quantity

- FOC: $M R-M C=0 \Rightarrow$ $M R=M C$
- Intersect at E, which determines optimal
$Q=30.97$
- As firm produce at $Q=30.97$, the market price
$P=90-30.97=59.03$.

Profit Maximization: Marginal Revenue $=$ Marginal Cost

If Price is a Function of Quantity

- Another way to maximize profit is by isoprofit curve and demand itself.
- $M C$ is also the individual supply curve

- Assume the firm is in perfect competition: infinite number of firms and each taken prices as given (no market power)
- This tiny firm thinks it is facing a horizontal demand curve, which means that he cannot affect prices with quantity produced

- The demand that firm is perceiving is called residual demand
- $P=50 \Rightarrow R(Q)=$ $50 Q \Rightarrow M R=50$
- $P=M R=M C \Rightarrow$
$1.8 Q^{0.8}=50 \Rightarrow Q=$ $\left(\frac{50}{1.8}\right)^{\frac{1}{0.8}} \approx 63.77$

Profit Maximization: Marginal Revenue $=$ Marginal Cost

Gains from Trade

Individual Supply Aggregates into Aggregate Supply

- Tiny firm 1 is facing residual demand $P_{1}=50$, and thus he wants to produce at

- Tiny firm 2: $P_{2}=40$, produce

$$
Q=\left(\frac{40}{1.8}\right)^{\frac{1}{0.8}} \approx 48.25
$$

- Same applies to firm 3 and 4, and thus even all firms have the same cost function, each point at supply curve represent each firm.

Individual Demand Aggregates into Aggregate Demand

- Tiny consumer 1 is facing residual supply $P_{1}=50$, and thus he wants to buy at
$Q=40$
- Tiny consumer 2: $P_{2}=40$, buy at $Q=50$
- Same applies to consumer 3 and 4 , and thus even all consumers have the same demand function, each point at demand curve represent
 each consumer.

Consumer and Producer Surplus

Goods Market

- Consumer A is willing to pay

$$
P_{A}=80
$$

- Firm A^{\prime} is will to produce at cost
$P_{A^{\prime}}=1.8 \times$ $10^{0.8} \approx 11.36$
- Both pay
$P^{*}=40.7$:

Consumer and Producer Surplus

Goods Market

- Consumer B is willing to pay

$$
P_{B}=70
$$

- Firm B^{\prime} is will to produce at cost
$P_{B^{\prime}}=1.8 \times$
$20^{0.8} \approx 19.77$
- Both pay
$P^{*}=40.7$:

Consumer and Producer Surplus

Goods Market

- Consumer C is willing to pay

$$
P_{C}=60
$$

- Firm C^{\prime} is will to produce at cost
$P_{C^{\prime}}=1.8 \times$ $30^{0.8} \approx 27.35$
- Both pay
$P^{*}=40.7$:

Consumer and Producer Surplus

Goods Market

- Consumer D is willing to pay

$$
P_{D}=50
$$

- Firm D^{\prime} is will to produce at cost
$P_{D^{\prime}}=1.8 \times$ $40^{0.8} \approx 34.43$
- Both pay
$P^{*}=40.7$:

Market Power

What if firm is monopoly?

- $M R=M C$ determines $Q^{*}=31$, and vertical upward to Demand at M_{2} to get $P^{*}=59$.
- Deadweight Loss created: $\triangle E M_{1} M_{2}$
- CS $\downarrow \because$ DWL \& PS
- PS \uparrow : gave up
$\triangle E M_{1} M_{3}$, but gain part of CS

Markup / Price Spread

- Markup $=\frac{P-M C}{P}$ is a measure of market power
- Graphically represented by $\overline{M_{1} M_{2}}$, is inversely proportional to price elasticity of demand.

Price Elasticity and Market Power I

- A firm's profit margin depends on the elasticity of demand, which is determined by competition:
- Demand is relatively inelastic if there are few close substitutes
- Firms with market power have enough bargaining power to set prices without losing customers to competitors
- Competition policy (limits on market power) can be beneficial to consumers when firms collude to keep prices high.

Price Elasticity and Market Power II

- Example of market power: A firm selling specialized products.
- They face little competition and hence have inelastic demand.
- They can set price above marginal cost without losing customers, thus earning monopoly rents.
- This is a form of market failure because there is deadweight loss.
- A natural monopoly arises when one firm can produce at lower average costs $(+)$ than two or more firms e.g. utilities.
- Instead of encouraging competition, policymakers may put price controls or make these firms publicly owned.

Price Elasticity and Market Power III

- Firms can increase their market power by:
(1) Innovating - Technological innovation can allow firms to differentiate their products from competitors' e.g. hybrid cars.
- Firms that invent a completely new product may prevent competition altogether through patents or copyright laws.
(2) Advertising - Firms can attract consumers away from competing products and create brand loyalty. Advertising can be more effective than discounts in increasing demand for a brand.
- Both of these tactics can shift the firm's demand curve.

