Review of Mathematics

Hui-Jun Chen

November 29, 2021

Your instructor

- My name is Hui-Jun Chen (Please call me Hui-Jun, or HJ if you cannot pronounce my name). I am a second-year PhD student studying Macroeconomics and International Economics.
- My research interests lies on fiscal policy, political friction, and inequality.
- Projects that I am working on: (1) The distributional effect of uncertain tax policy on wealth inequality, and (2) (Forthcoming) counter-factual experiment in the impacts of
European Super League on existing UEFA Champions League.
- I use Linux system and love the open source community. I also host my own GitHub pages and creates some useful programs for my research, such as file manager and bibliography manager.
- I am from New Taipei City, Taiwan.

Area Formula

Area Formula: Triangle

- Area formula: $\frac{1}{2} \times a \times h$

Area Formula: Rectangle

- Area formula: length \times width

Area Formula: Trapezoid

- Area formula: $\frac{\left(b_{1}+b_{2}\right)}{2} \times h$
- Or separate into two triangles and one rectangle

Basic Algebra Review

Basic Algebra Review: properties

- Associative properties:
- additive: $a+(b+c)=(a+b)+c$
- multiplicative: $a(b c)=(a b) c$
- Commutative properties:
- additive: $a+b=b+a$
- multiplicative: $a b=b a$
- Distributive properties: $a(b+c)=a b+a c$
- Properties for exponents:
- $a^{x} a^{y}=a^{x+y} ; \frac{a^{x}}{a^{y}}=a^{x-y}$
- $(a b)^{x}=a^{x} b^{x} ;\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
- $\left(a^{x}\right)^{y}=a^{x y}$

Basic Algebra Review: properties (Cont.)

- Properties for fractions:
- $a\left(\frac{b}{c}\right)=\frac{a b}{c}$
- $\frac{a}{b}=\frac{a c}{b}$
- $\frac{\frac{a}{c}}{\frac{b}{d}}=\frac{a d}{b c}$
- $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$
- $\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}$

Axioms of Equality

- $a+b=c \Longrightarrow a=c-b$
- $a-b=c \Longrightarrow a=c+b$
- $a b=c \Longrightarrow a=\frac{c}{b}$
- $\frac{a}{b}=c \Longrightarrow a=b c$

Calculus

Introductory Example

- Function: how y is gotten from x, written as $y=f(x)$.
- E.g., $y=3 x+2$: if $x=3$, then 3 times 3 and plus 2 will get $y=11$.
- Differentiation: how the value of y changes when the value of x changes.
- E.g., $y=3 x+2$,

Table 1: Table for how the value of x affects the value of y

x	1	2	3	4	5
y	5	8	11	14	17

Notice $\Delta x=1 \Longrightarrow \Delta y=3 \Longrightarrow \frac{\Delta y}{\Delta x}=3$, change to differentiation notation, $\frac{d y}{d x}=3$

- Tips: $y=3 x^{2}+9 x+2$, look at terms with x, $d y=3 \times 2 x(d x)+9(d x) \Longrightarrow \frac{d y}{d x}=6 x+9$

Notation and Convention

- Function is a mapping from argument to outcome:
- $y=f(x): f$ describes a mapping from argument x to outcome y
- Differentiation: given mapping f, how much y would change $(d y)$ if x change a fixed amoung $(d x)$
- First derivative: $y=f(x) \Longrightarrow \frac{d y}{d x}$ or $f^{\prime}(x)$
- the "change" itself
- Example: $y=x^{\alpha} \Longrightarrow \frac{d y}{d x}=\alpha x^{\alpha-1}$
- Partial derivative: $y=f(x, z) \Longrightarrow \frac{\partial y}{\partial x}$
- Example:

$$
y=x^{\alpha} z^{1-\alpha} \Longrightarrow \frac{\partial y}{\partial x}=\alpha x^{\alpha-1} z^{1-\alpha} ; \frac{\partial y}{\partial z}=(1-\alpha) x^{\alpha} z^{-\alpha}
$$

- Second derivative: $y=f(x) \Longrightarrow \frac{d^{2} f}{d x^{2}}$ or $f^{\prime \prime}(x)$
- the speed of "change"
- Example: $y=x^{\alpha} \Longrightarrow \frac{d^{2} f}{d x^{2}}=\alpha(\alpha-1) x^{\alpha-2}$

Production

Average Production of Labor (APL):
 $$
y=f(x) \Longrightarrow A P L=\frac{y}{x}=\frac{f(x)}{x}
$$

Production (Cont.)

Marginal Production of Labor (MPL):

$$
y=f(x) \Longrightarrow M P L=\frac{d y}{d x}=\frac{d f(x)}{d x}
$$

Concave / Convex and Diminishing MPL

- Concave v.s. Convex: Is production function looks like a "cave'?
- Concave function: whenever study hour increases by 1 unit, the speed of increase in grade point is decreasing.
- \Longrightarrow decreasing MPL

Application of Differentiation: Elasticity

Definition (The "A" Elasticity of "B")

percentage change in " B " when " A " changes by 1%, i.e., $-\frac{\% \Delta B}{\% \Delta A}$

Definition (The price elasticity of quantity demanded)

percentage change in quantity demanded when price changes by 1%, i.e., $-\frac{\% \Delta Q}{\% \Delta P}$

- Calculate percentage: $\frac{\text { value }}{\text { total amount }} \times 100 \%$
- Expand the $\% \Delta$ part: $\% \Delta Q=\frac{\Delta Q}{Q}$
- Use differentiation notation: $\% \Delta Q=\frac{\Delta Q}{Q}=\frac{d Q}{Q}$
- Rewrite Def of elasticity: $-\frac{\% \Delta Q}{\% \Delta P}=-\frac{d Q}{Q} / \frac{d P}{P}=-\frac{P}{Q} \frac{d Q}{d P}$

