# Debt Financing, Used Capital Markets and Capital Reallocation

Taiwan Economics Research 2025

Hui-Jun Chen

National Tsing Hua University

August 14, 2025

### Outline

- 1 Introduction
- 2 Model
- 3 Calibration
- 4 Results

# How do used capital markets and financial frictions affect business cycles?

> Small and young firms contribute to employment, productivity, and growth

(Haltiwanger et al., 2013; Haltiwanger, 2021)

They mainly invest in old capital, and subject to limited borrowing capacity

(Ma et al., 2022; Gertler and Gilchrist, 1994)

>> They are willing to exchange higher user cost for current growth

(Eisfeldt and Rampini, 2007)

- This paper: examine two channels regarding used capital markets and financial frictions
  - 1. User cost of capital directly fluctuates with the used capital prices
  - 2. Borrowing capacity depends on the resale value of the pledged collateral

(Banerjee and Blickle, 2021; Ioannidou et al., 2022)

- > Take away:
  - >> Used capital markets is beneficial in the long-run but amplify recessions from financial shocks
  - >> User cost channel is three times larger than the collateral channel

### Outline

- 1 Introduction
- 2 Model
- 3 Calibration
- 4 Results

#### Overview

#### I consider a heterogeneous firm model with real and financial friction:

- **Used investment market**: trade price *q* is determined by the supply (downward-adjust) and the demand (upward-adjust)
- **>** Households: own firms  $\Rightarrow$  firms discount as HH.
- **>** Firms: states  $(k, b, \varepsilon)$ 
  - **>>** DRS production function; i.i.d. exit shock  $\pi_d$
  - >> Upward-adjusting firms: purchase effective capital at cost Q.
    - Combine both new and used investment goods in a CES aggregator into capital stock
  - >> Downward-adjusting firms: sells used investment goods at price q.
  - **>>** Collateral constraint:  $b' \leq q\zeta k$ .

**>** Firms experience exogenous exit  $\pi_d$ :

$$v_0(k, b, \varepsilon, \mu) = \pi_d \max_{\sigma} [x^d(k, b, \varepsilon)] + (1 - \pi_d)v(k, b, \varepsilon, \mu),$$

> Conditional on survival, firm chooses upward- or downward-adjusting:

$$v(k, b, \varepsilon, \mu) = \max\{v^{u}(k, b, \varepsilon, \mu), v^{d}(k, b, \varepsilon, \mu)\}.$$

- > Upward-adjusting firms maximizes dividend and continuation value subject to
  - **>>** Budget constraints:  $0 < D < x^{u}(k, b, \varepsilon) + q_{b}b' Qk'$
  - **>>** Collateral constraints and cash  $x^{\mu}(k,b,\varepsilon) = z\varepsilon F(k,n) w(\mu)n b + Q(1-\delta)k$
  - >> Capital process for upward-adjusting firms (Lanteri (2018)):

$$k' = (1 - \delta)k + \left[\eta^{\frac{1}{s}}(i_{new})^{\frac{s-1}{s}} + (1 - \eta)^{\frac{1}{s}}(i_{used})^{\frac{s-1}{s}}\right]^{\frac{s}{s-1}},$$

leads to 
$$\frac{i_{used}}{i_{new}} = \frac{1-\eta}{\eta}(q+\gamma)^{-s}$$
, and purchasing price of capital  $Q = [\eta + (1-\eta)q^{1-s}]^{\frac{1}{1-s}}$ 

## User cost of capital

> Following Jorgenson (1963), the user cost of capital is the current purchase cost of capital, net of its resale value, accounting for depreciation and discounting,

$$c(q) = Q(q) - \beta(1 - \delta)q = \left[\eta + (1 - \eta)q^{1-s}\right]^{\frac{1}{1-s}} - \beta(1 - \delta)q$$

- $\triangleright$  When q is sufficiently high (> 0.7), decreasing used capital price increases user cost
  - >> Firms' user cost of capital is higher during recession (procyclical used capital price)

### Outline

- 1 Introduction
- 2 Model
- 3 Calibration
- 4 Results

## Calibration Strategies

- > Externally assign a subset of macro parameters from literature/data
  - ightharpoonup Kauffman Firm Survey ightarrow entrants leverage
  - $\Rightarrow$  BDS  $\rightarrow$  firm exit rate
  - $\rightarrow$  Khan and Thomas (2013)  $\rightarrow$  relative size of entrants
  - $\Rightarrow$  Edgerton (2011) & slope of demand  $\rightarrow$  Investment CES parameter
- > Internally calibrate the rest to match aggregate and investment rate moments
  - $\Rightarrow$  capital share  $\rightarrow$  capital-output ratio
  - >> credit parameter → debt-capital ratio
  - $\Rightarrow$  depreciation rate  $\rightarrow$  investment-capital ratio
  - $\Rightarrow$  disutility of labor  $\rightarrow$  one-third of labor
  - ightharpoonup Persistence/volatility of idio. productivity shock ightharpoonup serial correlation/std of investment rate
  - $\Rightarrow$  Share of new investment  $\rightarrow$  share of firms undertaking negative investment



### **Calibrated Moments**

|                                                      | model | data  |
|------------------------------------------------------|-------|-------|
| First moments                                        |       |       |
| Capital/Output, $K/Y$                                | 2.3   | 2.3   |
| Debt/Capital, $B/K$                                  | 0.353 | 0.370 |
| Labor share, $wN/Y$                                  | 0.6   | 0.6   |
| Investment/Capital, $I/K$                            | 0.069 | 0.069 |
| Second moments                                       |       |       |
| standard deviation of investment rate, $\sigma(i/k)$ | 0.338 | 0.337 |
| serial correlation of investment rate, $ ho(i/k)$    | 0.043 | 0.058 |
| frequency of negative investment                     | 0.117 | 0.104 |
| Untargeted moments                                   |       |       |
| average investment rate, $\mu(i/k)$                  | 0.107 | 0.122 |
| frequency of inaction region ( $abs(i/k) < 1\%$ )    | 0.504 | 0.081 |
| frequency of lumpy investment ( $i/k > 20\%$ )       | 0.143 | 0.186 |
| frequency of lumpy disinvestment ( $i/k < -20\%$ )   | 0.051 | 0.018 |

## Choose CES s to ensure downward-sloping secondary market demand



Higher q leads to substitution effects (through Q(q)) and income effects (through  $q\zeta k$ )

A sufficiently high CES parameter s is needed for the substitution effect to dominate

### Outline

- 1 Introduction
- 2 Model
- 3 Calibration
- 4 Results

### **Overview of Counterfactural Experiments**

I compare three scenarios in the comparison of long-run equilibrium,

- ➤ Baseline: with used capital markets clear
- > Fix Irreversibility: fix the degree of irreversibility the same as the Baseline
  - >> Let Q = 1 and  $q = \frac{q}{Q}$  without clearing used capital markets
- **>** Cost channel: fix the q in  $q \zeta k$  at the Baseline level, allow used capital markets clear In the short-run dynamics, I compare three transitional dynamics under productivity and financial shocks,
  - ➤ Baseline: with used capital markets clear
  - ➤ Partial Equilibrium: fixing q at the steady-state level without clearing used capital markets
  - **Cost channel:** fix the q in  $q\zeta k$  at the steady-state level, allow used capital markets clear

# Comparisons of Long-run Consequence of Counterfactural Experiments

|                        | Description                   | Baseline | Fix irreversibility | Cost channel |  |  |
|------------------------|-------------------------------|----------|---------------------|--------------|--|--|
| Aggregates             | (in percentage of baseline)   |          |                     |              |  |  |
| Y                      | output                        | (0.567)  | -1.202              | -0.000       |  |  |
| C                      | consumption                   | (0.476)  | -0.108              | -0.000       |  |  |
| N                      | labor                         | (0.332)  | -1.095              | -0.000       |  |  |
| K                      | capital                       | (1.311)  | -2.004              | -0.000       |  |  |
| I                      | investment                    | (0.228)  | -2.079              | -0.000       |  |  |
| B > 0                  | debt                          | (0.464)  | -1.704              | -0.000       |  |  |
| $\hat{z}$              | measured TFP                  | (1.021)  | -0.002              | -0.000       |  |  |
| Distribution           |                               |          |                     |              |  |  |
| $\mu_{	ext{unc}} K$    | unconstrained capital         | 2.156    | 2.057               | 2.156        |  |  |
| $\mu_{\mathrm{con}} K$ | constrained capital           | 1.251    | 1.204               | 1.251        |  |  |
| $\mu_{	ext{binding}}$  | firms with binding $q\zeta k$ | 0.280    | 0.284               | 0.280        |  |  |

### Peak-to-Trough Comparisons: Four-period Credit shocks

Table: Peak-to-Trough Declines: Credit Shock

|                     | TFP  | Y    | С    | N    | I     | Debt  |
|---------------------|------|------|------|------|-------|-------|
| Data                | 2.18 | 5.59 | 4.08 | 6.03 | 18.98 | 25.94 |
| Baseline            | 0.94 | 3.14 | 1.97 | 2.96 | 10.51 | 25.63 |
| Partial Equilibrium | 1.00 | 3.06 | 1.64 | 2.79 | 11.97 | 25.57 |
| Cost channel        | 0.95 | 3.17 | 2.03 | 3.00 | 10.67 | 26.01 |

- From Baseline to Cost channel: size of collateral channel is -0.03 pp
- ightharpoonup From Cost channel to Partial Equilibrium: size of user cost channel is  $0.11~{
  m pp}$
- ▶ Rising user cost deepens the trough by a factor of three than collateral value adjustment



# Response to a four-period credit crisis

Price adjustments amplify the severity and duration of recessions triggered by financial shocks



### Conclusion

- > Equilibrium model to quantify the business cycle implications of used capital markets
  - >> Price adjustment in used capital markets amplifies the severity and duration of recessions
  - >> User cost channel is three times larger than collateral channel

- > What's next:
  - Price fluctuations under aggregate uncertainty
  - >> Firm dynamics: how endogenous entry and exit affects the used capital markets

### References I

- Banerjee, Ryan and Kristian Blickle (2021) "Financial frictions, real estate collateral and small firm activity in Europe," European Economic Review, 138, 103823, 10.1016/j.euroecorev.2021.103823.
- Edgerton, Jesse (2011) "The effects of taxation on business investment: New evidence from used equipment," Federal Reserve Board of Governors, Mimeo, January.
- Eisfeldt, Andrea L. and Adriano A. Rampini (2007) "New or used? Investment with credit constraints," *Journal of Monetary Economics*, 54 (8), 2656 2681, 10.1016/j.jmoneco.2007.06.030.
- Gertler, M. and S. Gilchrist (1994) "Monetary Policy, Business Cycles, and the Behavior of Small Manufacturing Firms," The Quarterly Journal of Economics, 109 (2), 309 – 340, 10.2307/2118465.
- Haltiwanger, John (2021) "Entrepreneurship in the twenty-first century," Small Business Economics, 58 (1), 27 40, 10.1007/s11187-021-00542-0.
- Haltiwanger, John, Ron S. Jarmin, and Javier Miranda (2013) "Who Creates Jobs? Small versus Large versus Young," Review of Economics and Statistics, 95 (2), 347 361, 10.1162/rest\_a\_00288.
- Ioannidou, Vasso, Nicola Pavanini, and Yushi Peng (2022) "Collateral and asymmetric information in lending markets," *Journal of Financial Economics*, 144 (1), 93 121, 10.1016/j.jfineco.2021.12.010.
- Jorgenson, Dale W. (1963) "Capital Theory and Investment Behavior," *The American Economic Review*, 53 (2), 247–259, http://www.jstor.org/stable/1823868.

#### References II

- Khan, Aubhik and Julia K. Thomas (2013) "Credit Shocks and Aggregate Fluctuations in an Economy with Production Heterogeneity," *Journal of Political Economy*, 121 (6), 1055–1107, 10.1086/674142.
- Lanteri, Andrea (2018) "The Market for Used Capital: Endogenous Irreversibility and Reallocation over the Business Cycle," *American Economic Review*, 108 (9), 2383 2419, 10.1257/aer.20160131.
- Ma, Song, Justin Murfin, and Ryan Pratt (2022) "Young firms, old capital," *Journal of Financial Economics*, 146 (1), 331 356, 10.1016/j.jfineco.2021.09.017.

# Peak-to-Trough Comparisons: TFP shocks

Table: Peak-to-Trough Declines: TFP shock

|                     | TFP  | Y    | С    | N    | I     | Debt  |
|---------------------|------|------|------|------|-------|-------|
| Data                | 2.18 | 5.59 | 4.08 | 6.03 | 18.98 | 25.94 |
| Baseline            | 2.18 | 3.19 | 1.88 | 1.71 | 5.54  | 2.69  |
| Partial Equilibrium | 2.18 | 3.26 | 1.87 | 1.83 | 4.77  | 2.67  |
| Cost channel        | 2.18 | 3.18 | 1.88 | 1.70 | 5.51  | 2.66  |



# Almost no role of used capital market following a TFP shock





# Steady State distribution: median productivity



- > new firm k: 0.1311
- > constrained mass: 93.4%

- > average unconstrained k: 2.156
- > average constrained k: 1.251

• firms with currently binding collateral constraints: 28%

## **Upward-adjusting Firm**

$$v^u(k,b,\varepsilon;\mathbf{s}_f;\mu) = \max_{k',b',D} D + \sum_{g=1}^{N_\mathbf{s}} \pi^\mathbf{s}_{fg} d_g(\mathbf{s}_f;\mu) \sum_{j=1}^{N_\varepsilon} \pi^\varepsilon_{ij} \nu_0(k',b',\varepsilon'_j;\mathbf{s}'_g;\mu'),$$

subject to

$$0 \leq D \leq x^{u}(k, b, \varepsilon_{i}; z_{f}) + q_{b}b' - Qk',$$
 (Budget: Up)  

$$x^{u}(k, b, \varepsilon_{i}; z_{f}) = z_{f}\epsilon_{i}F(k, n) - w(z_{f}, \mu)n - b + Q(1 - \delta)k$$
 (Cash: Up)  

$$b' \leq q\zeta k,$$
 (Collateral)  

$$k' \geq (1 - \delta)k,$$
 (K range)  

$$\mu' = \Gamma(z_{f}; \mu),$$
 (Distribution)

 $q_b$ : bond price;  $d_g(z_f, \mu)$ : SDF;  $\zeta$ : efficiency of financial sector.

Downward-adjusting firms: replace all Q with q



$$v^d(k,b,arepsilon_i;\mathbf{s}_f,\mu) = \max_{k',b',D} D + \sum_{g=1}^{N_\mathbf{s}} \pi_{fg}^\mathbf{s} d_g(\mathbf{s}_f;\mu) \sum_{i=1}^{N_arepsilon} \pi_{ij}^arepsilon 
u_0(k',b',arepsilon_j';z_g',\mu'),$$

subject to

$$0 \leq D \leq x^{d}(k, b, \varepsilon; z_{f}) + q_{b}b' - qk',$$
 (Budget: Down) 
$$x^{d}(k, b, \varepsilon; z_{f}) = z_{f}\epsilon_{i}F(k, n) - w(z_{f}, \mu)n - b + q(1 - \delta)k$$
 (Cash: Down) 
$$b' \leq q\zeta k,$$
 (Collateral) 
$$k' \leq (1 - \delta)k,$$
 (K range) 
$$\mu' = \Gamma(z_{f}; \mu),$$
 (Distribution)

• Back igcep Definition of *recursive equilibrium* igcep Rewrite in terms of  $p(z_f;\mu)$ 

### **Calibrated Parameters**

| Parameter                 | Description                                                | Value |
|---------------------------|------------------------------------------------------------|-------|
| Preferences a             | nd technology                                              |       |
| $\beta$                   | Subjective discount factor                                 | 0.960 |
| $\psi$                    | Disutility from working                                    | 2.150 |
| $\alpha$                  | Capital share                                              | 0.270 |
| u                         | Labor share                                                | 0.600 |
| $\delta$                  | Depreciation rate                                          | 0.064 |
| Shocks                    |                                                            |       |
| $ ho_arepsilon$           | Persistence idiosyncratic productivity shock               | 0.740 |
| $\sigma_{\eta_arepsilon}$ | Volatility idiosyncratic productivity shock                | 0.100 |
| Firm charact              | reristic                                                   |       |
| ζ                         | efficiency of the financial sector                         | 1.250 |
| $\pi_d$                   | exogenous exit probability                                 | 0.085 |
| χ                         | relative size of entrants                                  | 0.100 |
| $\zeta_0$                 | entrants leverage                                          | 0.410 |
| Investment t              | echnology                                                  |       |
| $\eta$                    | new investment ratio                                       | 0.900 |
| S                         | elasticity of substitution between new and used investment | 7.000 |